Parallel Inspection Route Optimization With Priorities for 5G Base Station Networks
5G base station networks generate numerous alarms daily. With the increasing demand for digital services, it is vital to inspect and rectify anomalies to uphold user satisfaction. This study explores the potential of unmanned aerial vehicle (UAV) empowered opportunistic inspection based on alarm dat...
Uložené v:
| Vydané v: | IEEE transactions on automation science and engineering Ročník 22; s. 10860 - 10870 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
2025
|
| Predmet: | |
| ISSN: | 1545-5955, 1558-3783 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | 5G base station networks generate numerous alarms daily. With the increasing demand for digital services, it is vital to inspect and rectify anomalies to uphold user satisfaction. This study explores the potential of unmanned aerial vehicle (UAV) empowered opportunistic inspection based on alarm data. We formulate the inspection routing problem as a prioritized traveling salesman problem (PTSP) encompassing two categories of base stations. Priority is assigned to stations generating more alarms, while others are subject to opportunistic inspection. To expedite large-scale opportunistic inspection routes, we introduce a novel transformer-based parallelizable routing algorithm (TPRA). TPRA is an intelligent optimization that orchestrates multiple parallelized constrained reinforcement learning algorithms. Through balancing spectral clustering, the large-scale graph is segmented into manageable subgraphs. For each subgraph, the prioritized inspection routing problem is formulated as a constrained Markov decision process and optimized by transformer-based reinforcement learning in parallel. The optimized subgraphs are then merged using an adaptive large neighborhood search approach. Through parallel computing, our approach achieves as much as 75% reduction in computation time, while concurrently generating shorter routes. The approach is implemented in real-world cases to validate its efficacy. Note to Practitioners-The rapid expansion of 5G infrastructure underscores the critical need for advanced technology and maintenance strategies. Base stations are often placed at high altitudes to ensure line-of-sight connectivity, which poses difficulties for maintenance, particularly in challenging terrains. UAVs offer a promising solution for faster and safer inspection and rectification. The designed approach utilizes reinforcement learning in parallel to optimize UAV inspection routes in an opportunistic manner. This method strategically prioritizes inspection routes based on the real-time base station alarm data, ensuring a swift and effective response to potential issues. Trained in simulated scenarios, the model requires few adjustments for real-world deployment, making it readily implementable in 5G networks. Beyond the potential of the 5G network, the approach also unlocks new value across various types of service in the low-altitude economy. |
|---|---|
| AbstractList | 5G base station networks generate numerous alarms daily. With the increasing demand for digital services, it is vital to inspect and rectify anomalies to uphold user satisfaction. This study explores the potential of unmanned aerial vehicle (UAV) empowered opportunistic inspection based on alarm data. We formulate the inspection routing problem as a prioritized traveling salesman problem (PTSP) encompassing two categories of base stations. Priority is assigned to stations generating more alarms, while others are subject to opportunistic inspection. To expedite large-scale opportunistic inspection routes, we introduce a novel transformer-based parallelizable routing algorithm (TPRA). TPRA is an intelligent optimization that orchestrates multiple parallelized constrained reinforcement learning algorithms. Through balancing spectral clustering, the large-scale graph is segmented into manageable subgraphs. For each subgraph, the prioritized inspection routing problem is formulated as a constrained Markov decision process and optimized by transformer-based reinforcement learning in parallel. The optimized subgraphs are then merged using an adaptive large neighborhood search approach. Through parallel computing, our approach achieves as much as 75% reduction in computation time, while concurrently generating shorter routes. The approach is implemented in real-world cases to validate its efficacy. Note to Practitioners-The rapid expansion of 5G infrastructure underscores the critical need for advanced technology and maintenance strategies. Base stations are often placed at high altitudes to ensure line-of-sight connectivity, which poses difficulties for maintenance, particularly in challenging terrains. UAVs offer a promising solution for faster and safer inspection and rectification. The designed approach utilizes reinforcement learning in parallel to optimize UAV inspection routes in an opportunistic manner. This method strategically prioritizes inspection routes based on the real-time base station alarm data, ensuring a swift and effective response to potential issues. Trained in simulated scenarios, the model requires few adjustments for real-world deployment, making it readily implementable in 5G networks. Beyond the potential of the 5G network, the approach also unlocks new value across various types of service in the low-altitude economy. |
| Author | Liang, Zhenglin Dai, Xiangqi |
| Author_xml | – sequence: 1 givenname: Xiangqi orcidid: 0009-0006-3072-5346 surname: Dai fullname: Dai, Xiangqi organization: Department of Industrial Engineering, Tsinghua University, Beijing, China – sequence: 2 givenname: Zhenglin orcidid: 0000-0003-2572-9423 surname: Liang fullname: Liang, Zhenglin email: zhenglinliang@tsinghua.edu.cn organization: Department of Industrial Engineering, Tsinghua University, Beijing, China |
| BookMark | eNp9kM1KAzEURoNUsK0-gOAiLzA1k58ms6yl1kKxxVZcDmnmBqPTmZJEij69M04X4sLV_bh853I5A9Sr6goQuk7JKE1JdrudbGYjSqgYMcEIp-IM9VMhVMKkYr02c5GITIgLNAjhjRDKVUb6aLPWXpcllHhRhQOY6OoKP9UfEfDqEN3efemf1YuLr3jtXe1ddBCwrT0Wc3ynA-BN7DqPEI-1fw-X6NzqMsDVaQ7R8_1sO31Ilqv5YjpZJoYxFRNpDYgxkUqNuaTUZGrHWTFmlGTKCK20BMkM14qrAgprbLajsoCGTTOwTXeIZHfX-DoEDzY3rnsleu3KPCV56yZv3eStm_zkpiHTP-TBu732n_8yNx3jAOBXX3EmG8fffkdyjQ |
| CODEN | ITASC7 |
| CitedBy_id | crossref_primary_10_1109_TASE_2025_3598689 |
| Cites_doi | 10.1016/j.ipl.2007.03.010 10.1017/CBO9780511804441 10.1016/j.renene.2018.10.076 10.1007/s40890-018-0063-3 10.1109/TASE.2021.3062154 10.5120/ijca2016911906 10.1109/JIOT.2022.3231341 10.1145/3349625.3355437 10.1109/34.868688 10.48550/ARXIV.1706.03762 10.1287/trsc.1050.0135 10.1007/s11222-007-9033-z 10.1109/TASE.2021.3062810 10.1287/opre.18.6.1138 10.1109/TIT.2022.3187948 10.1109/TASE.2022.3175565 10.1016/j.eswa.2020.113526 10.1145/3197517.3201311 10.1287/trsc.2019.0909 10.1109/TASE.2022.3183335 10.1109/CVPR.2016.90 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TASE.2025.3530425 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-3783 |
| EndPage | 10870 |
| ExternalDocumentID | 10_1109_TASE_2025_3530425 10843778 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 92467302; 72188101 funderid: 10.13039/501100001809 – fundername: Huawei under the Huawei–Tsinghua Network Reliability Operations and Maintenance Innovation Research Long-Term Cooperation Agreement grantid: TC20210811013 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION |
| ID | FETCH-LOGICAL-c338t-7fce56078864722c98b43d632098c5a8a7e73c4a848dedfcf9b27de33819efb43 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001463995900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-5955 |
| IngestDate | Sat Nov 29 06:56:34 EST 2025 Tue Nov 18 22:06:01 EST 2025 Wed Nov 19 08:27:09 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c338t-7fce56078864722c98b43d632098c5a8a7e73c4a848dedfcf9b27de33819efb43 |
| ORCID | 0009-0006-3072-5346 0000-0003-2572-9423 |
| PageCount | 11 |
| ParticipantIDs | crossref_citationtrail_10_1109_TASE_2025_3530425 ieee_primary_10843778 crossref_primary_10_1109_TASE_2025_3530425 |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on automation science and engineering |
| PublicationTitleAbbrev | TASE |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref15 ref14 ref30 Kwon (ref11) ref2 ref1 Bello (ref10) 2016 ref17 ref16 ref19 Kool (ref12) ref18 Bresson (ref27) 2021 Razali (ref8); 2 ref24 ref26 Tamar (ref21) 2013 ref25 ref22 ref28 Yun (ref23) ref29 ref7 ref4 ref3 ref6 ref5 Vinyals (ref9); 28 Castro (ref20) |
| References_xml | – ident: ref7 doi: 10.1016/j.ipl.2007.03.010 – start-page: 7 volume-title: Proc. Stat ident: ref12 article-title: Attention, learn to solve routing problems! – volume: 2 start-page: 1 issue: 1 volume-title: Proc. World Congr. Eng. ident: ref8 article-title: Genetic algorithm performance with different selection strategies in solving tsp – ident: ref22 doi: 10.1017/CBO9780511804441 – ident: ref4 doi: 10.1016/j.renene.2018.10.076 – ident: ref30 doi: 10.1007/s40890-018-0063-3 – ident: ref2 doi: 10.1109/TASE.2021.3062154 – ident: ref5 doi: 10.5120/ijca2016911906 – ident: ref14 doi: 10.1109/JIOT.2022.3231341 – volume: 28 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref9 article-title: Pointer networks – ident: ref13 doi: 10.1145/3349625.3355437 – ident: ref18 doi: 10.1109/34.868688 – ident: ref26 doi: 10.48550/ARXIV.1706.03762 – ident: ref28 doi: 10.1287/trsc.1050.0135 – ident: ref17 doi: 10.1007/s11222-007-9033-z – ident: ref15 doi: 10.1109/TASE.2021.3062810 – start-page: 387 volume-title: Proc. 20th Int. Conf. Mach. Learn. ident: ref20 article-title: Policy gradients with variance related risk criteria – ident: ref6 doi: 10.1287/opre.18.6.1138 – ident: ref24 doi: 10.1109/TIT.2022.3187948 – ident: ref16 doi: 10.1109/TASE.2022.3175565 – ident: ref3 doi: 10.1016/j.eswa.2020.113526 – ident: ref19 doi: 10.1145/3197517.3201311 – ident: ref29 doi: 10.1287/trsc.2019.0909 – year: 2016 ident: ref10 article-title: Neural combinatorial optimization with reinforcement learning publication-title: arXiv:1611.09940 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref23 article-title: Are transformers universal approximators of sequence-to-sequence functions? – start-page: 21188 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref11 article-title: POMO: Policy optimization with multiple optima for reinforcement learning – year: 2021 ident: ref27 article-title: The transformer network for the traveling salesman problem publication-title: arXiv:2103.03012 – ident: ref1 doi: 10.1109/TASE.2022.3183335 – year: 2013 ident: ref21 article-title: Variance adjusted actor critic algorithms publication-title: arXiv:1310.3697 – ident: ref25 doi: 10.1109/CVPR.2016.90 |
| SSID | ssj0024890 |
| Score | 2.4136345 |
| Snippet | 5G base station networks generate numerous alarms daily. With the increasing demand for digital services, it is vital to inspect and rectify anomalies to... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 10860 |
| SubjectTerms | 5G mobile communication Automation Autonomous aerial vehicles Base stations Clustering algorithms Communication system operations and management Heuristic algorithms Inspection optimization methods parallel algorithms Routing Transformers Traveling salesman problems unmanned aerial vehicle |
| Title | Parallel Inspection Route Optimization With Priorities for 5G Base Station Networks |
| URI | https://ieeexplore.ieee.org/document/10843778 |
| Volume | 22 |
| WOSCitedRecordID | wos001463995900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 1558-3783 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024890 issn: 1545-5955 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86POjBz4nzixw8CZ21SZrkOGVTQeZgU3crbfKCg9lKt_n3m6RV50HBWykvUH5N8t7vfSJ0RoXKQh2ZILO7N6Aa7D0YQxYIAzQmWmrlXdlP97zfF-OxHNTF6r4WBgB88hm03aOP5etCLZyrzJ5wQQnnYhWtcs6rYq3vxnrCO1ScSRAwyVgdwrwM5cWoM-xaKhixNmGOvrMfSmhpqopXKr2tf37ONtqsrUfcqX73DlqBfBdtLPUU3EPDQVq6-ShTfJdXZZRFjl3eD-AHez281nWX-Hkyf8GDclKUvqcqtsYrZjf4ymo1PKzi87hf5YjPmuix1x1d3wb15IRAWco5D7hRYE0ZS29dd_hISZFRomMShVIoloqUAyeKpoIKDdooI7OIayCOvoGxsvuokRc5HCAMJjYQWzMhNsJSFZEKSxgZp4ZIe3oj00LhJ5SJqtuKu-kW08TTi1AmDv3EoZ_U6LfQ-deSt6qnxl_CTYf8kmAF-uEv74_QulteeUmOUWNeLuAEran3-WRWnvot8wENH73o |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8UTdSDnxjxswdPJsOxtVt7RINCRCQBlduyta-RBIcZw7_ftpuKB028Lcvbsry1fe_3Pn4PoXPCROJKTzmJXr0OkaDPwQAShykggS-5FDaU_dQNez02GvF-2axue2EAwBafQd1c2ly-nIq5CZXpHc6IH4ZsGa1QQrxG0a71Ta3HbEjFOAUO5ZSWScyGyy-HzUFLg0GP1n1qADz9YYYW5qpYs3Kz9c8P2kabpf-Im8UP30FLkO6ijQVWwT006MeZmZAywZ20aKScpthU_gB-0AfEa9l5iZ_H-QvuZ-NpZllVsXZfMb3FV9qu4UGRoce9okp8VkWPN63hddspZyc4QoPO3AmVAO3MaIBr-OE9wVlCfBn4nsuZoDGLQwh9QWJGmASphOKJF0rwDYADpWX3USWdpnCAMKhAQaAdhUAxDVZYzDRkpCFRPtf711M15H6qMhIlsbiZbzGJLMBweWS0HxntR6X2a-ji65G3glXjL-Gq0fyCYKH0w1_un6G19vC-G3U7vbsjtG5eVcRMjlElz-ZwglbFez6eZad2-XwAHLjBLw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+Inspection+Route+Optimization+With+Priorities+for+5G+Base+Station+Networks&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Dai%2C+Xiangqi&rft.au=Liang%2C+Zhenglin&rft.date=2025&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=22&rft.spage=10860&rft.epage=10870&rft_id=info:doi/10.1109%2FTASE.2025.3530425&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TASE_2025_3530425 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon |