Parallel Inspection Route Optimization With Priorities for 5G Base Station Networks

5G base station networks generate numerous alarms daily. With the increasing demand for digital services, it is vital to inspect and rectify anomalies to uphold user satisfaction. This study explores the potential of unmanned aerial vehicle (UAV) empowered opportunistic inspection based on alarm dat...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on automation science and engineering Ročník 22; s. 10860 - 10870
Hlavní autori: Dai, Xiangqi, Liang, Zhenglin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 2025
Predmet:
ISSN:1545-5955, 1558-3783
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract 5G base station networks generate numerous alarms daily. With the increasing demand for digital services, it is vital to inspect and rectify anomalies to uphold user satisfaction. This study explores the potential of unmanned aerial vehicle (UAV) empowered opportunistic inspection based on alarm data. We formulate the inspection routing problem as a prioritized traveling salesman problem (PTSP) encompassing two categories of base stations. Priority is assigned to stations generating more alarms, while others are subject to opportunistic inspection. To expedite large-scale opportunistic inspection routes, we introduce a novel transformer-based parallelizable routing algorithm (TPRA). TPRA is an intelligent optimization that orchestrates multiple parallelized constrained reinforcement learning algorithms. Through balancing spectral clustering, the large-scale graph is segmented into manageable subgraphs. For each subgraph, the prioritized inspection routing problem is formulated as a constrained Markov decision process and optimized by transformer-based reinforcement learning in parallel. The optimized subgraphs are then merged using an adaptive large neighborhood search approach. Through parallel computing, our approach achieves as much as 75% reduction in computation time, while concurrently generating shorter routes. The approach is implemented in real-world cases to validate its efficacy. Note to Practitioners-The rapid expansion of 5G infrastructure underscores the critical need for advanced technology and maintenance strategies. Base stations are often placed at high altitudes to ensure line-of-sight connectivity, which poses difficulties for maintenance, particularly in challenging terrains. UAVs offer a promising solution for faster and safer inspection and rectification. The designed approach utilizes reinforcement learning in parallel to optimize UAV inspection routes in an opportunistic manner. This method strategically prioritizes inspection routes based on the real-time base station alarm data, ensuring a swift and effective response to potential issues. Trained in simulated scenarios, the model requires few adjustments for real-world deployment, making it readily implementable in 5G networks. Beyond the potential of the 5G network, the approach also unlocks new value across various types of service in the low-altitude economy.
AbstractList 5G base station networks generate numerous alarms daily. With the increasing demand for digital services, it is vital to inspect and rectify anomalies to uphold user satisfaction. This study explores the potential of unmanned aerial vehicle (UAV) empowered opportunistic inspection based on alarm data. We formulate the inspection routing problem as a prioritized traveling salesman problem (PTSP) encompassing two categories of base stations. Priority is assigned to stations generating more alarms, while others are subject to opportunistic inspection. To expedite large-scale opportunistic inspection routes, we introduce a novel transformer-based parallelizable routing algorithm (TPRA). TPRA is an intelligent optimization that orchestrates multiple parallelized constrained reinforcement learning algorithms. Through balancing spectral clustering, the large-scale graph is segmented into manageable subgraphs. For each subgraph, the prioritized inspection routing problem is formulated as a constrained Markov decision process and optimized by transformer-based reinforcement learning in parallel. The optimized subgraphs are then merged using an adaptive large neighborhood search approach. Through parallel computing, our approach achieves as much as 75% reduction in computation time, while concurrently generating shorter routes. The approach is implemented in real-world cases to validate its efficacy. Note to Practitioners-The rapid expansion of 5G infrastructure underscores the critical need for advanced technology and maintenance strategies. Base stations are often placed at high altitudes to ensure line-of-sight connectivity, which poses difficulties for maintenance, particularly in challenging terrains. UAVs offer a promising solution for faster and safer inspection and rectification. The designed approach utilizes reinforcement learning in parallel to optimize UAV inspection routes in an opportunistic manner. This method strategically prioritizes inspection routes based on the real-time base station alarm data, ensuring a swift and effective response to potential issues. Trained in simulated scenarios, the model requires few adjustments for real-world deployment, making it readily implementable in 5G networks. Beyond the potential of the 5G network, the approach also unlocks new value across various types of service in the low-altitude economy.
Author Liang, Zhenglin
Dai, Xiangqi
Author_xml – sequence: 1
  givenname: Xiangqi
  orcidid: 0009-0006-3072-5346
  surname: Dai
  fullname: Dai, Xiangqi
  organization: Department of Industrial Engineering, Tsinghua University, Beijing, China
– sequence: 2
  givenname: Zhenglin
  orcidid: 0000-0003-2572-9423
  surname: Liang
  fullname: Liang, Zhenglin
  email: zhenglinliang@tsinghua.edu.cn
  organization: Department of Industrial Engineering, Tsinghua University, Beijing, China
BookMark eNp9kM1KAzEURoNUsK0-gOAiLzA1k58ms6yl1kKxxVZcDmnmBqPTmZJEij69M04X4sLV_bh853I5A9Sr6goQuk7JKE1JdrudbGYjSqgYMcEIp-IM9VMhVMKkYr02c5GITIgLNAjhjRDKVUb6aLPWXpcllHhRhQOY6OoKP9UfEfDqEN3efemf1YuLr3jtXe1ddBCwrT0Wc3ynA-BN7DqPEI-1fw-X6NzqMsDVaQ7R8_1sO31Ilqv5YjpZJoYxFRNpDYgxkUqNuaTUZGrHWTFmlGTKCK20BMkM14qrAgprbLajsoCGTTOwTXeIZHfX-DoEDzY3rnsleu3KPCV56yZv3eStm_zkpiHTP-TBu732n_8yNx3jAOBXX3EmG8fffkdyjQ
CODEN ITASC7
CitedBy_id crossref_primary_10_1109_TASE_2025_3598689
Cites_doi 10.1016/j.ipl.2007.03.010
10.1017/CBO9780511804441
10.1016/j.renene.2018.10.076
10.1007/s40890-018-0063-3
10.1109/TASE.2021.3062154
10.5120/ijca2016911906
10.1109/JIOT.2022.3231341
10.1145/3349625.3355437
10.1109/34.868688
10.48550/ARXIV.1706.03762
10.1287/trsc.1050.0135
10.1007/s11222-007-9033-z
10.1109/TASE.2021.3062810
10.1287/opre.18.6.1138
10.1109/TIT.2022.3187948
10.1109/TASE.2022.3175565
10.1016/j.eswa.2020.113526
10.1145/3197517.3201311
10.1287/trsc.2019.0909
10.1109/TASE.2022.3183335
10.1109/CVPR.2016.90
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TASE.2025.3530425
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3783
EndPage 10870
ExternalDocumentID 10_1109_TASE_2025_3530425
10843778
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 92467302; 72188101
  funderid: 10.13039/501100001809
– fundername: Huawei under the Huawei–Tsinghua Network Reliability Operations and Maintenance Innovation Research Long-Term Cooperation Agreement
  grantid: TC20210811013
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
ID FETCH-LOGICAL-c338t-7fce56078864722c98b43d632098c5a8a7e73c4a848dedfcf9b27de33819efb43
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001463995900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-5955
IngestDate Sat Nov 29 06:56:34 EST 2025
Tue Nov 18 22:06:01 EST 2025
Wed Nov 19 08:27:09 EST 2025
IsPeerReviewed false
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-7fce56078864722c98b43d632098c5a8a7e73c4a848dedfcf9b27de33819efb43
ORCID 0009-0006-3072-5346
0000-0003-2572-9423
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TASE_2025_3530425
ieee_primary_10843778
crossref_primary_10_1109_TASE_2025_3530425
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref15
ref14
ref30
Kwon (ref11)
ref2
ref1
Bello (ref10) 2016
ref17
ref16
ref19
Kool (ref12)
ref18
Bresson (ref27) 2021
Razali (ref8); 2
ref24
ref26
Tamar (ref21) 2013
ref25
ref22
ref28
Yun (ref23)
ref29
ref7
ref4
ref3
ref6
ref5
Vinyals (ref9); 28
Castro (ref20)
References_xml – ident: ref7
  doi: 10.1016/j.ipl.2007.03.010
– start-page: 7
  volume-title: Proc. Stat
  ident: ref12
  article-title: Attention, learn to solve routing problems!
– volume: 2
  start-page: 1
  issue: 1
  volume-title: Proc. World Congr. Eng.
  ident: ref8
  article-title: Genetic algorithm performance with different selection strategies in solving tsp
– ident: ref22
  doi: 10.1017/CBO9780511804441
– ident: ref4
  doi: 10.1016/j.renene.2018.10.076
– ident: ref30
  doi: 10.1007/s40890-018-0063-3
– ident: ref2
  doi: 10.1109/TASE.2021.3062154
– ident: ref5
  doi: 10.5120/ijca2016911906
– ident: ref14
  doi: 10.1109/JIOT.2022.3231341
– volume: 28
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref9
  article-title: Pointer networks
– ident: ref13
  doi: 10.1145/3349625.3355437
– ident: ref18
  doi: 10.1109/34.868688
– ident: ref26
  doi: 10.48550/ARXIV.1706.03762
– ident: ref28
  doi: 10.1287/trsc.1050.0135
– ident: ref17
  doi: 10.1007/s11222-007-9033-z
– ident: ref15
  doi: 10.1109/TASE.2021.3062810
– start-page: 387
  volume-title: Proc. 20th Int. Conf. Mach. Learn.
  ident: ref20
  article-title: Policy gradients with variance related risk criteria
– ident: ref6
  doi: 10.1287/opre.18.6.1138
– ident: ref24
  doi: 10.1109/TIT.2022.3187948
– ident: ref16
  doi: 10.1109/TASE.2022.3175565
– ident: ref3
  doi: 10.1016/j.eswa.2020.113526
– ident: ref19
  doi: 10.1145/3197517.3201311
– ident: ref29
  doi: 10.1287/trsc.2019.0909
– year: 2016
  ident: ref10
  article-title: Neural combinatorial optimization with reinforcement learning
  publication-title: arXiv:1611.09940
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref23
  article-title: Are transformers universal approximators of sequence-to-sequence functions?
– start-page: 21188
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref11
  article-title: POMO: Policy optimization with multiple optima for reinforcement learning
– year: 2021
  ident: ref27
  article-title: The transformer network for the traveling salesman problem
  publication-title: arXiv:2103.03012
– ident: ref1
  doi: 10.1109/TASE.2022.3183335
– year: 2013
  ident: ref21
  article-title: Variance adjusted actor critic algorithms
  publication-title: arXiv:1310.3697
– ident: ref25
  doi: 10.1109/CVPR.2016.90
SSID ssj0024890
Score 2.4136345
Snippet 5G base station networks generate numerous alarms daily. With the increasing demand for digital services, it is vital to inspect and rectify anomalies to...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 10860
SubjectTerms 5G mobile communication
Automation
Autonomous aerial vehicles
Base stations
Clustering algorithms
Communication system operations and management
Heuristic algorithms
Inspection
optimization methods
parallel algorithms
Routing
Transformers
Traveling salesman problems
unmanned aerial vehicle
Title Parallel Inspection Route Optimization With Priorities for 5G Base Station Networks
URI https://ieeexplore.ieee.org/document/10843778
Volume 22
WOSCitedRecordID wos001463995900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1558-3783
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024890
  issn: 1545-5955
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86POjBz4nzixw8CZ21SZrkOGVTQeZgU3crbfKCg9lKt_n3m6RV50HBWykvUH5N8t7vfSJ0RoXKQh2ZILO7N6Aa7D0YQxYIAzQmWmrlXdlP97zfF-OxHNTF6r4WBgB88hm03aOP5etCLZyrzJ5wQQnnYhWtcs6rYq3vxnrCO1ScSRAwyVgdwrwM5cWoM-xaKhixNmGOvrMfSmhpqopXKr2tf37ONtqsrUfcqX73DlqBfBdtLPUU3EPDQVq6-ShTfJdXZZRFjl3eD-AHez281nWX-Hkyf8GDclKUvqcqtsYrZjf4ymo1PKzi87hf5YjPmuix1x1d3wb15IRAWco5D7hRYE0ZS29dd_hISZFRomMShVIoloqUAyeKpoIKDdooI7OIayCOvoGxsvuokRc5HCAMJjYQWzMhNsJSFZEKSxgZp4ZIe3oj00LhJ5SJqtuKu-kW08TTi1AmDv3EoZ_U6LfQ-deSt6qnxl_CTYf8kmAF-uEv74_QulteeUmOUWNeLuAEran3-WRWnvot8wENH73o
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8UTdSDnxjxswdPJsOxtVt7RINCRCQBlduyta-RBIcZw7_ftpuKB028Lcvbsry1fe_3Pn4PoXPCROJKTzmJXr0OkaDPwQAShykggS-5FDaU_dQNez02GvF-2axue2EAwBafQd1c2ly-nIq5CZXpHc6IH4ZsGa1QQrxG0a71Ta3HbEjFOAUO5ZSWScyGyy-HzUFLg0GP1n1qADz9YYYW5qpYs3Kz9c8P2kabpf-Im8UP30FLkO6ijQVWwT006MeZmZAywZ20aKScpthU_gB-0AfEa9l5iZ_H-QvuZ-NpZllVsXZfMb3FV9qu4UGRoce9okp8VkWPN63hddspZyc4QoPO3AmVAO3MaIBr-OE9wVlCfBn4nsuZoDGLQwh9QWJGmASphOKJF0rwDYADpWX3USWdpnCAMKhAQaAdhUAxDVZYzDRkpCFRPtf711M15H6qMhIlsbiZbzGJLMBweWS0HxntR6X2a-ji65G3glXjL-Gq0fyCYKH0w1_un6G19vC-G3U7vbsjtG5eVcRMjlElz-ZwglbFez6eZad2-XwAHLjBLw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+Inspection+Route+Optimization+With+Priorities+for+5G+Base+Station+Networks&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Dai%2C+Xiangqi&rft.au=Liang%2C+Zhenglin&rft.date=2025&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=22&rft.spage=10860&rft.epage=10870&rft_id=info:doi/10.1109%2FTASE.2025.3530425&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TASE_2025_3530425
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon