Gradient Projection and Conditional Gradient Methods for Constrained Nonconvex Minimization
Minimization of a smooth function on a sphere or, more generally, on a smooth manifold, is the simplest non-convex optimization problem. It has a lot of applications. Our goal is to propose a version of the gradient projection algorithm for its solution and to obtain results that guarantee convergen...
Uloženo v:
| Vydáno v: | Numerical functional analysis and optimization Ročník 41; číslo 7; s. 822 - 849 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Abingdon
Taylor & Francis
18.05.2020
Taylor & Francis Ltd |
| Témata: | |
| ISSN: | 0163-0563, 1532-2467 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Minimization of a smooth function on a sphere or, more generally, on a smooth manifold, is the simplest non-convex optimization problem. It has a lot of applications. Our goal is to propose a version of the gradient projection algorithm for its solution and to obtain results that guarantee convergence of the algorithm under some minimal natural assumptions. We use the Ležanski-Polyak-Lojasiewicz condition on a manifold to prove the global linear convergence of the algorithm. Another method well fitted for the problem is the conditional gradient (Frank-Wolfe) algorithm. We examine some conditions which guarantee global convergence of full-step version of the method with linear rate. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0163-0563 1532-2467 |
| DOI: | 10.1080/01630563.2019.1704780 |