Gradient Projection and Conditional Gradient Methods for Constrained Nonconvex Minimization

Minimization of a smooth function on a sphere or, more generally, on a smooth manifold, is the simplest non-convex optimization problem. It has a lot of applications. Our goal is to propose a version of the gradient projection algorithm for its solution and to obtain results that guarantee convergen...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Numerical functional analysis and optimization Ročník 41; číslo 7; s. 822 - 849
Hlavní autori: Balashov, M. V., Polyak, B. T., Tremba, A. A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Abingdon Taylor & Francis 18.05.2020
Taylor & Francis Ltd
Predmet:
ISSN:0163-0563, 1532-2467
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Minimization of a smooth function on a sphere or, more generally, on a smooth manifold, is the simplest non-convex optimization problem. It has a lot of applications. Our goal is to propose a version of the gradient projection algorithm for its solution and to obtain results that guarantee convergence of the algorithm under some minimal natural assumptions. We use the Ležanski-Polyak-Lojasiewicz condition on a manifold to prove the global linear convergence of the algorithm. Another method well fitted for the problem is the conditional gradient (Frank-Wolfe) algorithm. We examine some conditions which guarantee global convergence of full-step version of the method with linear rate.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0163-0563
1532-2467
DOI:10.1080/01630563.2019.1704780