Multi-Objective Reactive Power Optimization Based on Refined Chaos Particle Swarm Optimization Algorithm

In order to reduce the active network loss, increase the power quality and voltage static stability of power system, an index function of multi-objective reactive power optimization is established. Then, an improved adaptive chaotic particle swarm optimization algorithm is proposed to solve the prob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials Jg. 494-495; H. Current Development of Mechanical Engineering and Energy; S. 1857 - 1860
Hauptverfasser: Ai, Ying, Zhang, Dan Hong, Su, Yi Xin, Peng, Yao, Nie, Hong Wei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Zurich Trans Tech Publications Ltd 06.02.2014
Schlagworte:
ISBN:3038350036, 9783038350033
ISSN:1660-9336, 1662-7482, 1662-7482
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to reduce the active network loss, increase the power quality and voltage static stability of power system, an index function of multi-objective reactive power optimization is established. Then, an improved adaptive chaotic particle swarm optimization algorithm is proposed to solve the problem. Through the using of cubic chaotic mapping, the particle population is initialized to enhance the diversity of its value; In the optimization process, poor fitness particles are updated with chaos disturbance, and their inertia weight are adjusted dynamically with particles fitness value so as to avoid local convergence. Simulation of IEEE 30 bus system shows that the proposed algorithm for reactive power optimization can avoid premature convergence effectively, and converge to optimal solution rapidly.
Bibliographie:Selected, peer reviewed papers from the 2013 International Symposium on Vehicle, Mechanical, and Electrical Engineering (ISVMEE 2013), December 21-22, 2013, Taiwan, China
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISBN:3038350036
9783038350033
ISSN:1660-9336
1662-7482
1662-7482
DOI:10.4028/www.scientific.net/AMM.494-495.1857