Using Supervised Machine Learning in Automated Content Analysis: An Example Using Relational Uncertainty

The goal of this research is to make progress towards using supervised machine learning for automated content analysis dealing with complex interpretations of text. For Step 1, two humans coded a sub-sample of online forum posts for relational uncertainty. For Step 2, we evaluated reliability, in wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communication methods and measures Jg. 13; H. 4; S. 287 - 304
Hauptverfasser: Pilny, Andrew, McAninch, Kelly, Slone, Amanda, Moore, Kelsey
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Philadelphia Routledge 02.10.2019
Taylor & Francis Ltd
Schlagworte:
ISSN:1931-2458, 1931-2466
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The goal of this research is to make progress towards using supervised machine learning for automated content analysis dealing with complex interpretations of text. For Step 1, two humans coded a sub-sample of online forum posts for relational uncertainty. For Step 2, we evaluated reliability, in which we trained three different classifiers to learn from those subjective human interpretations. Reliability was established when two different metrics of inter-coder reliability could not distinguish whether a human or a machine coded the text on a separate hold-out set. Finally, in Step 3 we assessed validity. To accomplish this, we administered a survey in which participants described their own relational uncertainty/certainty via text and completed a questionnaire. After classifying the text, the machine's classifications of the participants' text positively correlated with the subjects' own self-reported relational uncertainty and relational satisfaction. We discuss our results in line with areas of computational communication science, content analysis, and interpersonal communication.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1931-2458
1931-2466
DOI:10.1080/19312458.2019.1650166