Regularized nonmonotone submodular maximization

In this paper, we present a thorough study of the regularized submodular maximization problem, in which the objective $ f:=g-\ell $ f := g − ℓ can be expressed as the difference between a submodular function and a modular function. This problem has drawn much attention in recent years. While existin...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Optimization Ročník 73; číslo 6; s. 1739 - 1765
Hlavní autori: Lu, Cheng, Yang, Wenguo, Gao, Suixiang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Philadelphia Taylor & Francis 02.06.2024
Taylor & Francis LLC
Predmet:
ISSN:0233-1934, 1029-4945
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, we present a thorough study of the regularized submodular maximization problem, in which the objective $ f:=g-\ell $ f := g − ℓ can be expressed as the difference between a submodular function and a modular function. This problem has drawn much attention in recent years. While existing works focuses on the case of g being monotone, we investigate the problem with a nonmonotone g. The main technique we use is to introduce a distorted objective function, which varies weights of the submodular component g and the modular component ℓ during the iterations of the algorithm. By combining the weighting technique and measured continuous greedy algorithm, we present an algorithm for the matroid-constrained problem, which has a provable approximation guarantee. In the cardinality-constrained case, we utilize random greedy algorithm and sampling technique together with the weighting technique to design two efficient algorithms. Moreover, we consider the unconstrained problem and propose a much simpler and faster algorithm compared with the algorithms for solving the problem with a cardinality constraint.
AbstractList In this paper, we present a thorough study of the regularized submodular maximization problem, in which the objective $ f:=g-\ell $ f := g − ℓ can be expressed as the difference between a submodular function and a modular function. This problem has drawn much attention in recent years. While existing works focuses on the case of g being monotone, we investigate the problem with a nonmonotone g. The main technique we use is to introduce a distorted objective function, which varies weights of the submodular component g and the modular component ℓ during the iterations of the algorithm. By combining the weighting technique and measured continuous greedy algorithm, we present an algorithm for the matroid-constrained problem, which has a provable approximation guarantee. In the cardinality-constrained case, we utilize random greedy algorithm and sampling technique together with the weighting technique to design two efficient algorithms. Moreover, we consider the unconstrained problem and propose a much simpler and faster algorithm compared with the algorithms for solving the problem with a cardinality constraint.
In this paper, we present a thorough study of the regularized submodular maximization problem, in which the objective f:=g−ℓ can be expressed as the difference between a submodular function and a modular function. This problem has drawn much attention in recent years. While existing works focuses on the case of g being monotone, we investigate the problem with a nonmonotone g. The main technique we use is to introduce a distorted objective function, which varies weights of the submodular component g and the modular component ℓ during the iterations of the algorithm. By combining the weighting technique and measured continuous greedy algorithm, we present an algorithm for the matroid-constrained problem, which has a provable approximation guarantee. In the cardinality-constrained case, we utilize random greedy algorithm and sampling technique together with the weighting technique to design two efficient algorithms. Moreover, we consider the unconstrained problem and propose a much simpler and faster algorithm compared with the algorithms for solving the problem with a cardinality constraint.
Author Lu, Cheng
Yang, Wenguo
Gao, Suixiang
Author_xml – sequence: 1
  givenname: Cheng
  surname: Lu
  fullname: Lu, Cheng
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Wenguo
  surname: Yang
  fullname: Yang, Wenguo
  email: yangwg@ucas.ac.cn
  organization: University of Chinese Academy of Sciences
– sequence: 3
  givenname: Suixiang
  surname: Gao
  fullname: Gao, Suixiang
  organization: University of Chinese Academy of Sciences
BookMark eNqFkF9LwzAUxYNMcJt-BGHgc7f8bRN8UYZTYSCIPoc0TSWjTWaaotunN3XzxQd9uhfu75x7OBMwct4ZAC4RnCPI4QJiQpAgdI7TNseoICLnJ2CMIBYZFZSNwHhgsgE6A5Ou20CIUY7pGCyezVvfqGD3ppol39Y7H5P9rOvL1lfDadaqT9vavYrWu3NwWqumMxfHOQWvq7uX5UO2frp_XN6uM00Ij1mBOMuZKhAWRCtRIqM4hqTGpGK4hFgzTqkwuS5pyVllRJErVGhTQmFUjioyBVcH323w773potz4Prj0UhJYYMwIQjxR1wdKB991wdRS2_idMwZlG4mgHBqSPw3JoSF5bCip2S_1NthWhd2_upuDzrrah1Z9-NBUMqpd40MdlNM2hfzb4gu6dn45
CitedBy_id crossref_primary_10_1007_s40305_025_00633_9
crossref_primary_10_1109_ACCESS_2023_3317691
crossref_primary_10_1007_s00453_023_01183_3
crossref_primary_10_1007_s10898_025_01473_w
Cites_doi 10.1007/BFb0121195
10.1145/956750.956769
10.1007/BF01588971
10.1287/moor.2016.0842
10.1006/jctb.2000.1989
10.1145/285055.285059
10.1145/1374376.1374389
10.1137/1.9781611973082.83
10.1287/moor.2016.0809
10.1145/502090.502096
10.1609/aaai.v29i1.9486
10.1137/090779346
10.1137/130929205
10.1137/1.9781611973730.80
10.1007/BF02579273
10.1007/s00453-020-00757-9
10.1109/FOCS.2011.46
10.1137/110832318
10.1145/3447548.3467367
10.1287/moor.3.3.177
10.1016/j.geb.2005.02.006
10.1137/080733991
ContentType Journal Article
Copyright 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
2023 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
– notice: 2023 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
DOI 10.1080/02331934.2023.2173968
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1029-4945
EndPage 1765
ExternalDocumentID 10_1080_02331934_2023_2173968
2173968
Genre Research Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11991022; 12071459
– fundername: Fundamental Research Funds for the Central Universities
  grantid: E1E40107X2
GroupedDBID .7F
.DC
.QJ
0BK
0R~
123
29N
30N
4.4
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DKSSO
DU5
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c338t-718565a71293ca9b1ea8203f23d52b02c58449e6cb4b85de976a17ceb09ea61d3
IEDL.DBID TFW
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000936904500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0233-1934
IngestDate Wed Aug 13 04:04:54 EDT 2025
Tue Nov 18 20:52:10 EST 2025
Sat Nov 29 06:01:42 EST 2025
Mon Oct 20 23:46:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-718565a71293ca9b1ea8203f23d52b02c58449e6cb4b85de976a17ceb09ea61d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3072253118
PQPubID 27961
PageCount 27
ParticipantIDs informaworld_taylorfrancis_310_1080_02331934_2023_2173968
proquest_journals_3072253118
crossref_citationtrail_10_1080_02331934_2023_2173968
crossref_primary_10_1080_02331934_2023_2173968
PublicationCentury 2000
PublicationDate 2024-06-02
PublicationDateYYYYMMDD 2024-06-02
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-02
  day: 02
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Optimization
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis LLC
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis LLC
References e_1_3_4_4_1
e_1_3_4_3_1
e_1_3_4_2_1
e_1_3_4_9_1
e_1_3_4_8_1
e_1_3_4_7_1
e_1_3_4_20_1
e_1_3_4_6_1
e_1_3_4_5_1
e_1_3_4_23_1
e_1_3_4_24_1
e_1_3_4_21_1
e_1_3_4_22_1
e_1_3_4_28_1
e_1_3_4_25_1
e_1_3_4_26_1
e_1_3_4_29_1
Alon N (e_1_3_4_27_1) 2004
e_1_3_4_12_1
e_1_3_4_13_1
e_1_3_4_10_1
e_1_3_4_11_1
e_1_3_4_16_1
e_1_3_4_17_1
e_1_3_4_14_1
e_1_3_4_15_1
e_1_3_4_18_1
e_1_3_4_19_1
References_xml – ident: e_1_3_4_15_1
  doi: 10.1007/BFb0121195
– ident: e_1_3_4_2_1
  doi: 10.1145/956750.956769
– ident: e_1_3_4_14_1
  doi: 10.1007/BF01588971
– ident: e_1_3_4_23_1
  doi: 10.1287/moor.2016.0842
– ident: e_1_3_4_8_1
  doi: 10.1006/jctb.2000.1989
– ident: e_1_3_4_13_1
– ident: e_1_3_4_10_1
  doi: 10.1145/285055.285059
– ident: e_1_3_4_6_1
  doi: 10.1145/1374376.1374389
– ident: e_1_3_4_19_1
  doi: 10.1137/1.9781611973082.83
– ident: e_1_3_4_29_1
  doi: 10.1287/moor.2016.0809
– ident: e_1_3_4_9_1
  doi: 10.1145/502090.502096
– ident: e_1_3_4_28_1
  doi: 10.1609/aaai.v29i1.9486
– ident: e_1_3_4_22_1
  doi: 10.1137/090779346
– ident: e_1_3_4_21_1
  doi: 10.1137/130929205
– ident: e_1_3_4_18_1
  doi: 10.1137/1.9781611973730.80
– ident: e_1_3_4_7_1
  doi: 10.1007/BF02579273
– ident: e_1_3_4_24_1
  doi: 10.1007/s00453-020-00757-9
– ident: e_1_3_4_3_1
– ident: e_1_3_4_20_1
  doi: 10.1109/FOCS.2011.46
– ident: e_1_3_4_26_1
  doi: 10.1137/110832318
– ident: e_1_3_4_12_1
  doi: 10.1145/3447548.3467367
– ident: e_1_3_4_4_1
– ident: e_1_3_4_11_1
– ident: e_1_3_4_16_1
  doi: 10.1287/moor.3.3.177
– ident: e_1_3_4_25_1
– volume-title: The probabilistic method
  year: 2004
  ident: e_1_3_4_27_1
– ident: e_1_3_4_5_1
  doi: 10.1016/j.geb.2005.02.006
– ident: e_1_3_4_17_1
  doi: 10.1137/080733991
SSID ssj0021624
Score 2.3799381
Snippet In this paper, we present a thorough study of the regularized submodular maximization problem, in which the objective $ f:=g-\ell $ f := g − ℓ can be expressed...
In this paper, we present a thorough study of the regularized submodular maximization problem, in which the objective f:=g−ℓ can be expressed as the difference...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1739
SubjectTerms Algorithms
Constraints
continuous greedy algorithm
Greedy algorithms
Maximization
Optimization
random greedy algorithm
regularized problem
sampling
Submodular maximization
Weighting
Title Regularized nonmonotone submodular maximization
URI https://www.tandfonline.com/doi/abs/10.1080/02331934.2023.2173968
https://www.proquest.com/docview/3072253118
Volume 73
WOSCitedRecordID wos000936904500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1029-4945
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021624
  issn: 0233-1934
  databaseCode: TFW
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yPOjBb3E6pQev2dokTdajiMODDJGpu5V8FQZuk7WK-Nf7kqZjQ8SD3hrKS8vLS97vhfd-D6FLprhgLDW4YBnBDCA7VgXvYw1YO1FKCeFJfZ7uxHDYH4-z-5BNWIa0ShdDFzVRhD-r3eaWqmwy4nrgZsBwqLsRIbQLmJpm3JX7ArJ3SX2jwfMy5Eq4b2vrJLATaWp4fpplzTutcZd-O6u9Axrs_sOv76GdgD6jq9pc9tGGnR2g7RVOwkPUe_Dd6ReTT2ui2XwGZjp3hN1RCZ5zbtyraCo_JtNQwHmEHgc3o-tbHLoqYA3haIXBGQGIk8I5ei0zlVgJKIAWhJqUqJhogCQss1wrpvqpsYBXZCK0VXFmJU8MPUYt-Lo9QZFlgEcc_wyBB8ACMuHGFrEiKbE6payNWKPNXAfKcdf54iVPGmbSoI_c6SMP-mij7lLstebc-E0gW12qvPKXHUXdmSSnv8h2mnXNw_YFkVjAOUch-Dr9w9RnaAuGzCeWkQ5qVYs3e4429Xs1KRcX3lC_AMGu4Go
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEB60CurBt1itugevaXeT7OsoYqlYe5CqvYVNNgsF20q7ivjrnWR3pUWkB70thEmWySTzTZj5BuCSyyDk3E9JxmNKOEJ2IrMgIgqxtielDENL6vPUDXu9aDCI52thTFqliaGzgijC3tXmcJvH6ColroV-Bi2HmScRypoIqlkcRKuwZrrTmQCs337-Drq8wDa2NSLEyFRVPL9Ns-CfFthLf9zW1gW1d_7j53dhuwSgzlVhMXuwosf7sDVHS3gArQfboH46_NSpM56M0VInhrPbmaHznKRmyBklH8NRWcN5CI_tm_51h5SNFYjCiDQn6I8QxyWh8fUqiaWnEwQCLKMs9al0qUJUwmMdKMll5KcaIUvihUpLN9ZJ4KXsCGq4uj4GR3OEJIaChuIHwoHEC1KduZL6VCuf8TrwSp1ClazjpvnFi_AqctJSH8LoQ5T6qEPzW-y1oN1YJhDP75XI7XtHVjQnEWyJbKPaWFGeYBRxQ7zqGMZfJ3-Y-gI2Ov37ruje9u5OYROHuM0zow2o5dM3fQbr6j0fzqbn1mq_AAJA5I0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5aRfTgW6xW3YPX1N0k-zqKuiiWUqRqb8vmsVCwD9pVxF_vJJstLSI96G0hTLJMJjPfhMk3CF0yHoSM-RLnLCaYAWTHPA8iLABre5zzMDSkPi-tsN2Oer24Y6sJp7asUufQeUkUYXy1PtxjmVcVcVcQZsBwqL4RIbQJmJrGQbSK1gA6-9qwu8nrLOfyAtPXVotgLVM94vltmoXwtEBe-sNZmwiU7PzDv--ibQs_nevSXvbQihruo605UsIDdPVk2tNP-l9KOsPREOx0pBm7nSmEzpHUQ84g--wP7AvOQ_Sc3HVv7rFtq4AF5KMFhmgEKC4LdaQXWcw9lQEMoDmh0ifcJQIwCYtVIDjjkS8VAJbMC4XibqyywJP0CNVgdXWMHMUAkGgCGgIfAAYyL5AqdznxiRI-ZXXEKm2mwnKO69YXb6lXUZNafaRaH6nVRx01Z2LjknRjmUA8v1VpYW478rI1SUqXyDaqfU3t-QURNwRHRyH7OvnD1Bdoo3ObpK2H9uMp2oQRZorMSAPVism7OkPr4qPoTyfnxma_AVgs4z8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regularized+nonmonotone+submodular+maximization&rft.jtitle=Optimization&rft.au=Cheng%2C+Lu&rft.au=Yang%2C+Wenguo&rft.au=Gao%2C+Suixiang&rft.date=2024-06-02&rft.pub=Taylor+%26+Francis+LLC&rft.issn=0233-1934&rft.eissn=1029-4945&rft.volume=73&rft.issue=6&rft.spage=1739&rft.epage=1765&rft_id=info:doi/10.1080%2F02331934.2023.2173968&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-1934&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-1934&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-1934&client=summon