Modelling of acetaldehyde and acetic acid combustion
Despite the beneficial impact of biofuels on most regulated pollutants and carbon dioxide emissions, their combustion results in the generation of undesired pollutants, such as acetaldehyde and acetic acid. To better understand the chemistry of these species, detailed chemical kinetic models derivin...
Saved in:
| Published in: | Combustion theory and modelling Vol. 27; no. 4; pp. 536 - 557 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Abingdon
Taylor & Francis
07.06.2023
Taylor & Francis Ltd |
| Subjects: | |
| ISSN: | 1364-7830, 1741-3559 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Despite the beneficial impact of biofuels on most regulated pollutants and carbon dioxide emissions, their combustion results in the generation of undesired pollutants, such as acetaldehyde and acetic acid. To better understand the chemistry of these species, detailed chemical kinetic models deriving from two alternative strategies for mechanism generation were developed and validated against available data. The first model represents a semi-lumped mechanism comprising 89 species and 366 reactions, whereas the latter is automatically generated to aggregate elemental steps based on a rate-based algorithm, and it contains 541 species and 27,334 reactions. Under the studied conditions, the two kinetic models fairly predicted ignition delay times and laminar burning velocity data of acetic acid and acetaldehyde. Few discrepancies were observed for ignition delay time at temperatures lower than 1300 K. However, the overall agreement between experimental measurements and numerical estimations allowed for the use of the two kinetic models to unravel the chemistry of the investigated species.
Highlights
Identification of key primary reactions for acetic acid and acetaldehyde
Integration of an existing kinetic mechanism with selected reactions
Development of a detailed kinetic mechanism through an automated algorithm
Comparison of experimental and numerical data for overall reactivity
Analysis of the chemistry of acetic acid and acetaldehyde |
|---|---|
| AbstractList | Despite the beneficial impact of biofuels on most regulated pollutants and carbon dioxide emissions, their combustion results in the generation of undesired pollutants, such as acetaldehyde and acetic acid. To better understand the chemistry of these species, detailed chemical kinetic models deriving from two alternative strategies for mechanism generation were developed and validated against available data. The first model represents a semi-lumped mechanism comprising 89 species and 366 reactions, whereas the latter is automatically generated to aggregate elemental steps based on a rate-based algorithm, and it contains 541 species and 27,334 reactions. Under the studied conditions, the two kinetic models fairly predicted ignition delay times and laminar burning velocity data of acetic acid and acetaldehyde. Few discrepancies were observed for ignition delay time at temperatures lower than 1300 K. However, the overall agreement between experimental measurements and numerical estimations allowed for the use of the two kinetic models to unravel the chemistry of the investigated species.
Highlights
Identification of key primary reactions for acetic acid and acetaldehyde
Integration of an existing kinetic mechanism with selected reactions
Development of a detailed kinetic mechanism through an automated algorithm
Comparison of experimental and numerical data for overall reactivity
Analysis of the chemistry of acetic acid and acetaldehyde Despite the beneficial impact of biofuels on most regulated pollutants and carbon dioxide emissions, their combustion results in the generation of undesired pollutants, such as acetaldehyde and acetic acid. To better understand the chemistry of these species, detailed chemical kinetic models deriving from two alternative strategies for mechanism generation were developed and validated against available data. The first model represents a semi-lumped mechanism comprising 89 species and 366 reactions, whereas the latter is automatically generated to aggregate elemental steps based on a rate-based algorithm, and it contains 541 species and 27,334 reactions. Under the studied conditions, the two kinetic models fairly predicted ignition delay times and laminar burning velocity data of acetic acid and acetaldehyde. Few discrepancies were observed for ignition delay time at temperatures lower than 1300 K. However, the overall agreement between experimental measurements and numerical estimations allowed for the use of the two kinetic models to unravel the chemistry of the investigated species.HighlightsIdentification of key primary reactions for acetic acid and acetaldehydeIntegration of an existing kinetic mechanism with selected reactionsDevelopment of a detailed kinetic mechanism through an automated algorithmComparison of experimental and numerical data for overall reactivityAnalysis of the chemistry of acetic acid and acetaldehyde |
| Author | Pio, Gianmaria Salzano, Ernesto Wako, Fekadu Mosisa |
| Author_xml | – sequence: 1 givenname: Fekadu Mosisa surname: Wako fullname: Wako, Fekadu Mosisa organization: Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali, Università degli studi di Bologna – sequence: 2 givenname: Gianmaria orcidid: 0000-0002-0770-1710 surname: Pio fullname: Pio, Gianmaria email: gianmaria.pio@unibo.it organization: Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali, Università degli studi di Bologna – sequence: 3 givenname: Ernesto orcidid: 0000-0002-3238-2491 surname: Salzano fullname: Salzano, Ernesto organization: Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali, Università degli studi di Bologna |
| BookMark | eNqFkE9LAzEQxYNUsK1-BGHB89Yks9ns4kUp_oOKl95DNslqyjapyRbZb2_W1osHPc0wvN-bmTdDE-edQeiS4AXBFb4mUBa8ArygmMKCEl7VHE7QlPCC5MBYPUl90uSj6AzNYtxgjCmnxRQVL16brrPuLfNtJpXpZafN-6BNJp3-HliVitWZ8ttmH3vr3Tk6bWUXzcWxztH64X69fMpXr4_Py7tVrgCqPi-VZlQ3hQTd1oYqyUkDDJThpilrTRllHNNGaawL0KqsG1mVCWGKKs4A5ujqYLsL_mNvYi82fh9c2iho-qSooaY8qW4OKhV8jMG0Qtlejmf2QdpOECzGlMRPSmJMSRxTSjT7Re-C3cow_MvdHjjrWh-28tOHToteDp0PbZBO2Sjgb4svmfB_hA |
| CitedBy_id | crossref_primary_10_1016_j_fuel_2023_130747 crossref_primary_10_1016_j_elstat_2025_104148 crossref_primary_10_1016_j_supflu_2023_106149 crossref_primary_10_1039_D5CP02245B |
| Cites_doi | 10.1002/kin.550160504 10.1021/jp054934r 10.1016/j.combustflame.2016.05.007 10.1016/j.fuel.2020.118553 10.1021/jp9637690 10.1002/kin.21154 10.1021/jp010698i 10.3390/en14123562 10.1007/978-1-4684-0186-8_5 10.1016/j.proci.2016.06.053 10.1021/j100316a037 10.1016/S0082-0784(06)80726-5 10.1021/jp063224y 10.1016/1352-2310(96)00102-1 10.2172/7073290 10.1002/kin.550060202 10.1021/jp303819e 10.1021/j100314a017 10.1016/S0010-2180(98)00111-4 10.1080/00102209208947215 10.1016/j.combustflame.2011.11.002 10.1016/j.combustflame.2010.12.008 10.1080/13647830.2019.1638972 10.1016/0010-2180(66)90022-8 10.1039/jr9490002877 10.1002/(SICI)1097-4601(1998)30:3<229::AID-KIN9>3.0.CO;2-U 10.1021/jp030001o 10.1002/kin.20603 10.1080/13647830.2019.1642519 10.1039/j29680001153 10.1016/j.combustflame.2012.07.008 10.1016/j.proci.2014.06.141 10.1146/annurev.pc.41.100190.002021 10.1016/j.combustflame.2011.12.017 10.1016/j.combustflame.2022.112080 10.1021/jp906918z 10.1021/jp067597a 10.1021/jp106446q 10.1021/acs.iecr.8b01377 10.1021/jp4095485 10.1021/j100248a033 10.1063/1.3253102 10.1016/S0082-0784(00)80542-1 10.1021/jp210722w 10.1016/S0360-1285(97)00034-8 10.1021/jp990998o 10.1016/S0082-0784(96)80252-9 10.1016/0360-1285(84)90118-7 10.1016/j.combustflame.2011.08.007 10.1021/ef901107f 10.1002/kin.20512 10.1016/j.proci.2018.06.137 10.1016/j.proci.2008.05.036 10.1039/B307050F 10.1021/jp906919w 10.1016/j.proci.2008.06.188 10.1039/C5RA26459F 10.1021/jp044679v 10.1016/j.proci.2014.06.136 10.1002/kin.20294 10.1016/j.pecs.2012.03.004 10.1021/jp5072814 10.1039/b205692e 10.1016/j.combustflame.2016.07.016 10.1021/cr00023a005 10.1016/j.combustflame.2015.09.014 10.1021/jp064922l 10.1016/j.cpc.2016.02.013 10.1016/j.jaap.2014.05.012 10.1016/j.combustflame.2005.01.003 10.1007/s11144-009-5511-y 10.1016/j.fuel.2015.09.031 10.1002/kin.20179 10.1016/j.combustflame.2017.07.013 10.1002/chin.201236258 10.1063/1.1744539 10.1016/j.proci.2014.06.112 10.1002/kin.550180508 10.1021/acs.jpca.7b07361 |
| ContentType | Journal Article |
| Copyright | 2023 Informa UK Limited, trading as Taylor & Francis Group 2023 2023 Informa UK Limited, trading as Taylor & Francis Group |
| Copyright_xml | – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023 – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group |
| DBID | AAYXX CITATION 7TB 8FD FR3 H8D L7M |
| DOI | 10.1080/13647830.2023.2178973 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry |
| EISSN | 1741-3559 |
| EndPage | 557 |
| ExternalDocumentID | 10_1080_13647830_2023_2178973 2178973 |
| Genre | Research Article |
| GroupedDBID | .7F .QJ 0BK 0R~ 29F 2DF 30N 4.4 5GY 5VS AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADMLS ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P J9A KYCEM LJTGL M4Z NA5 O9- P2P RIG RNANH RNS RO9 ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAYXX CITATION 7TB 8FD FR3 H8D L7M |
| ID | FETCH-LOGICAL-c338t-6cd52db4a3df9e2ca71b353ce7eb69d2525702bcd0d43dc69ba86d525c2c7533 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000936378200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1364-7830 |
| IngestDate | Sun Nov 30 04:13:16 EST 2025 Sat Nov 29 02:42:25 EST 2025 Tue Nov 18 22:19:44 EST 2025 Mon Oct 20 23:45:22 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c338t-6cd52db4a3df9e2ca71b353ce7eb69d2525702bcd0d43dc69ba86d525c2c7533 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0770-1710 0000-0002-3238-2491 |
| PQID | 2830493927 |
| PQPubID | 2045308 |
| PageCount | 22 |
| ParticipantIDs | informaworld_taylorfrancis_310_1080_13647830_2023_2178973 proquest_journals_2830493927 crossref_citationtrail_10_1080_13647830_2023_2178973 crossref_primary_10_1080_13647830_2023_2178973 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-07 |
| PublicationDateYYYYMMDD | 2023-06-07 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-07 day: 07 |
| PublicationDecade | 2020 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon |
| PublicationTitle | Combustion theory and modelling |
| PublicationYear | 2023 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | CIT0072 CIT0071 CIT0030 CIT0074 CIT0073 CIT0032 CIT0076 CIT0031 CIT0075 CIT0034 CIT0078 CIT0077 CIT0070 Demore W. (CIT0088) 1997 Hoyle M. (CIT0023) CIT0036 CIT0035 CIT0079 CIT0038 CIT0039 CIT0083 CIT0082 CIT0041 CIT0085 CIT0040 CIT0043 CIT0087 CIT0042 CIT0086 CIT0001 CIT0045 CIT0089 CIT0044 Faravelli T. (CIT0084) 2019 CIT0081 CIT0080 Song J. (CIT0037) 2004 CIT0003 CIT0047 CIT0002 CIT0046 CIT0005 CIT0049 CIT0004 CIT0048 CIT0007 CIT0006 CIT0009 CIT0008 CIT0050 CIT0052 CIT0010 CIT0054 CIT0053 CIT0012 CIT0056 CIT0011 CIT0055 Yaws C.L. (CIT0033) 2012 CIT0090 CIT0092 CIT0091 CIT0014 CIT0058 CIT0013 CIT0057 CIT0016 CIT0015 CIT0059 CIT0018 Goodwin D. (CIT0051) 2003; 14 CIT0017 CIT0019 CIT0061 CIT0060 CIT0063 CIT0062 CIT0021 CIT0065 CIT0020 CIT0064 CIT0067 CIT0022 CIT0066 CIT0025 CIT0069 CIT0024 CIT0068 CIT0027 CIT0026 CIT0029 CIT0028 |
| References_xml | – ident: CIT0040 – ident: CIT0025 doi: 10.1002/kin.550160504 – ident: CIT0010 doi: 10.1021/jp054934r – ident: CIT0004 doi: 10.1016/j.combustflame.2016.05.007 – ident: CIT0016 doi: 10.1016/j.fuel.2020.118553 – ident: CIT0038 doi: 10.1021/jp9637690 – ident: CIT0039 doi: 10.1002/kin.21154 – ident: CIT0090 doi: 10.1021/jp010698i – ident: CIT0029 doi: 10.3390/en14123562 – ident: CIT0015 doi: 10.1007/978-1-4684-0186-8_5 – ident: CIT0043 doi: 10.1016/j.proci.2016.06.053 – ident: CIT0083 doi: 10.1021/j100316a037 – ident: CIT0054 – ident: CIT0062 doi: 10.1016/S0082-0784(06)80726-5 – ident: CIT0050 – ident: CIT0060 doi: 10.1021/jp063224y – ident: CIT0017 doi: 10.1016/1352-2310(96)00102-1 – ident: CIT0031 doi: 10.2172/7073290 – ident: CIT0089 doi: 10.1002/kin.550060202 – ident: CIT0032 doi: 10.1021/jp303819e – ident: CIT0078 doi: 10.1021/j100314a017 – ident: CIT0077 – ident: CIT0091 doi: 10.1016/S0010-2180(98)00111-4 – ident: CIT0063 doi: 10.1080/00102209208947215 – ident: CIT0013 doi: 10.1016/j.combustflame.2011.11.002 – ident: CIT0027 doi: 10.1016/j.combustflame.2010.12.008 – ident: CIT0009 doi: 10.1080/13647830.2019.1638972 – ident: CIT0024 doi: 10.1016/0010-2180(66)90022-8 – ident: CIT0055 doi: 10.1039/jr9490002877 – ident: CIT0007 doi: 10.1002/(SICI)1097-4601(1998)30:3<229::AID-KIN9>3.0.CO;2-U – ident: CIT0081 doi: 10.1021/jp030001o – ident: CIT0041 doi: 10.1002/kin.20603 – ident: CIT0014 doi: 10.1080/13647830.2019.1642519 – ident: CIT0056 doi: 10.1039/j29680001153 – ident: CIT0021 doi: 10.1016/j.combustflame.2012.07.008 – ident: CIT0005 doi: 10.1016/j.proci.2014.06.141 – ident: CIT0011 doi: 10.1146/annurev.pc.41.100190.002021 – ident: CIT0019 – ident: CIT0006 doi: 10.1016/j.combustflame.2011.12.017 – ident: CIT0048 doi: 10.1016/j.combustflame.2022.112080 – ident: CIT0072 doi: 10.1021/jp906918z – volume-title: Yaws’ critical property data for chemical engineers and chemists year: 2012 ident: CIT0033 – ident: CIT0074 doi: 10.1021/jp067597a – ident: CIT0069 doi: 10.1021/jp106446q – ident: CIT0030 doi: 10.1021/acs.iecr.8b01377 – volume-title: Building robust chemical reaction mechanisms: next generation of automatic model construction software year: 2004 ident: CIT0037 – ident: CIT0068 doi: 10.1021/jp4095485 – ident: CIT0085 doi: 10.1021/j100248a033 – ident: CIT0086 doi: 10.1063/1.3253102 – ident: CIT0079 doi: 10.1016/S0082-0784(00)80542-1 – ident: CIT0034 doi: 10.1021/jp210722w – ident: CIT0008 doi: 10.1016/S0360-1285(97)00034-8 – volume-title: Mathematical modelling of gas-phase complex reaction systems: pyrolysis and combustion year: 2019 ident: CIT0084 – ident: CIT0092 doi: 10.1021/jp990998o – ident: CIT0065 doi: 10.1016/S0082-0784(96)80252-9 – ident: CIT0087 doi: 10.1016/0360-1285(84)90118-7 – ident: CIT0026 doi: 10.1016/j.combustflame.2011.08.007 – ident: CIT0018 doi: 10.1021/ef901107f – ident: CIT0075 doi: 10.1002/kin.20512 – ident: CIT0028 doi: 10.1016/j.proci.2018.06.137 – ident: CIT0080 doi: 10.1016/j.proci.2008.05.036 – ident: CIT0067 doi: 10.1039/B307050F – volume-title: Chemical kinetics and photochemical data for use in stratospheric modeling year: 1997 ident: CIT0088 – ident: CIT0066 doi: 10.1021/jp906919w – ident: CIT0082 doi: 10.1016/j.proci.2008.06.188 – ident: CIT0002 doi: 10.1039/C5RA26459F – ident: CIT0059 doi: 10.1021/jp044679v – volume-title: Investigation of the flammability limits of acetic acid at elevated temperature and pressure ident: CIT0023 – ident: CIT0052 doi: 10.1016/j.proci.2014.06.136 – ident: CIT0053 doi: 10.1002/kin.20294 – ident: CIT0012 doi: 10.1016/j.pecs.2012.03.004 – volume: 14 start-page: 2003 year: 2003 ident: CIT0051 publication-title: Chem. Vapor Depos. – ident: CIT0061 doi: 10.1021/jp5072814 – ident: CIT0076 doi: 10.1039/b205692e – ident: CIT0042 doi: 10.1016/j.combustflame.2016.07.016 – ident: CIT0044 doi: 10.1021/cr00023a005 – ident: CIT0073 doi: 10.1016/j.combustflame.2015.09.014 – ident: CIT0049 – ident: CIT0058 doi: 10.1021/jp064922l – ident: CIT0036 doi: 10.1016/j.cpc.2016.02.013 – ident: CIT0022 doi: 10.1016/j.jaap.2014.05.012 – ident: CIT0070 doi: 10.1016/j.combustflame.2005.01.003 – ident: CIT0057 doi: 10.1007/s11144-009-5511-y – ident: CIT0046 doi: 10.1016/j.fuel.2015.09.031 – volume-title: Kinetic Modelling of Biofuels: Pyrolysis and Auto-Ignition of Aldehydes ident: CIT0001 – ident: CIT0064 doi: 10.1002/kin.20179 – ident: CIT0020 doi: 10.1016/j.combustflame.2017.07.013 – ident: CIT0035 doi: 10.1002/chin.201236258 – ident: CIT0045 doi: 10.1063/1.1744539 – ident: CIT0071 doi: 10.1016/j.proci.2014.06.112 – ident: CIT0003 doi: 10.1002/kin.550180508 – ident: CIT0047 doi: 10.1021/acs.jpca.7b07361 |
| SSID | ssj0002724 |
| Score | 2.3569214 |
| Snippet | Despite the beneficial impact of biofuels on most regulated pollutants and carbon dioxide emissions, their combustion results in the generation of undesired... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 536 |
| SubjectTerms | Acetaldehyde Acetic acid Acids Algorithms Biofuels Carbon dioxide Chemistry Combustion Delay time Ignition ignition delay times kinetic modelling laminar burning velocity Mathematical models Pollutants |
| Title | Modelling of acetaldehyde and acetic acid combustion |
| URI | https://www.tandfonline.com/doi/abs/10.1080/13647830.2023.2178973 https://www.proquest.com/docview/2830493927 |
| Volume | 27 |
| WOSCitedRecordID | wos000936378200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 1741-3559 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002724 issn: 1364-7830 databaseCode: TFW dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yPOjBb3E6pQevnW2SfuQo4vAgw8PQ3ULzkuJAOlmr4H9vXpqODZEd9FRaeEl5yfsKL78fIdcMBC-iMgkNjXXI8wTCAkE_4zKhPFUUIneL__kxG4_z6VQ8-W7C2rdVYg1dtkARzlejcReq7jribmLEPM9ZNETq76HNqXORId6nDf1ompPRy9IX08zT2qY8RJHuDs9vo6xFpzXs0h--2gWg0f4__PoB2fPZZ3DbbpdDsmWqI7K7gkl4TDiyozmg7mBeBgUYm51r8_qlTWBndR9mYB8zHdipFZKBzasTMhndT-4eQk-tEIKtSZswBZ1QrXjBdCkMhSKLFUsYGKRIEZo6cjuqQEeaMw2pUEWeWpEEKNgCh52SXjWvzBkJENArNrkNhVj88NhW1EJozWwZZhgVUZ_wTqMSPOw4sl-8ydijk3Y6kagT6XXSJ8Ol2HuLu7FJQKwul2zcgUfZspNItkF20K2t9CZcS0RG48Kmj9n5H4a-IDv46prLsgHpNYsPc0m24bOZ1Ysrt1m_ARvT4U0 |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFH_oFNSD3-J0ag9eO9sk_chRxDFx7lR0t9AmKQ6kk60K_vfmpe3YENlBT4WWl5SX5H2E934_gGsqOUu9PHA18ZXL4kC6KYJ--nlAWJgR6dku_udBNBzGoxFf7IXBskrMofMKKMLaajzceBndlMTd-Ah6HlOvi9zfXRNUxzyi67ARGF-L-PlJ72VujUlUE9uGzEWZpovnt2GW_NMSeukPa21dUG_vP35-H3brANS5rXbMAazp4hB2FmAJj4AhQZrF6nYmuZNKbQJ0pV-_lHbMtPbFWJrHWDlm7gz5wCbFMSS9--Su79bsCq40aWnphlIFRGUspSrnmsg08jMaUKmRJYUrYvntSCaVpxhVMuRZGodGJJBEmhyHnkCrmBT6FBzE9PJ1bLwh5j_MN0k150pRk4lpSrjXBtaoVMgaeRwJMN6EXwOUNjoRqBNR66QN3bnYewW9sUqAL66XKO2dR14RlAi6QrbTLK6oT_FMIDga4yaCjM7-MPQVbPWTp4EYPAwfz2EbP9las6gDrXL6oS9gU36W49n00u7cb3-G5Xc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFH_oFNGD3-J0ag9eO9sk_chR1KE4xg5DdwttkuJAtrFVwf_evCwdGyI76KnQ8pLy8vI-wsvvB3BNJWdZUES-JqHyWRpJP0PQz7CICItzIgN7i_-lnXQ6ab_Pu66bcOraKrGGLmZAEdZX4-Yeq6LqiLsJEfM8pUETqb-bJqdOeULXYcOkzjEaea_1OnfGJHG8tjHzUaa6xPPbMEvhaQm89IezthGotfcP_74Puy799G5n9nIAa3p4CDsLoIRHwJAezSJ1e6PCy6Q26bnSb19Ke2ZW-2IgzWOgPDN1jmxgo-Ex9FoPvbtH33Er-NIUpaUfSxURlbOMqoJrIrMkzGlEpUaOFK6IZbcjuVSBYlTJmOdZGhuRSBJpKhx6ArXhaKhPwUNEr1CnJhZi9cNCU1JzrhQ1dZimhAd1YJVGhXS440h_8S5CB09a6USgToTTSR2ac7HxDHhjlQBfXC5R2hOPYkZPIugK2Ua1tsLt4alAaDTGTf6YnP1h6CvY6t63RPup83wO2_jFNpolDaiVkw99AZvysxxMJ5fWbr8B0GHkKQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+of+acetaldehyde+and+acetic+acid+combustion&rft.jtitle=Combustion+theory+and+modelling&rft.au=Wako%2C+Fekadu+Mosisa&rft.au=Pio%2C+Gianmaria&rft.au=Salzano%2C+Ernesto&rft.date=2023-06-07&rft.issn=1364-7830&rft.eissn=1741-3559&rft.volume=27&rft.issue=4&rft.spage=536&rft.epage=557&rft_id=info:doi/10.1080%2F13647830.2023.2178973&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_13647830_2023_2178973 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-7830&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-7830&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-7830&client=summon |