Modelling of acetaldehyde and acetic acid combustion

Despite the beneficial impact of biofuels on most regulated pollutants and carbon dioxide emissions, their combustion results in the generation of undesired pollutants, such as acetaldehyde and acetic acid. To better understand the chemistry of these species, detailed chemical kinetic models derivin...

Full description

Saved in:
Bibliographic Details
Published in:Combustion theory and modelling Vol. 27; no. 4; pp. 536 - 557
Main Authors: Wako, Fekadu Mosisa, Pio, Gianmaria, Salzano, Ernesto
Format: Journal Article
Language:English
Published: Abingdon Taylor & Francis 07.06.2023
Taylor & Francis Ltd
Subjects:
ISSN:1364-7830, 1741-3559
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Despite the beneficial impact of biofuels on most regulated pollutants and carbon dioxide emissions, their combustion results in the generation of undesired pollutants, such as acetaldehyde and acetic acid. To better understand the chemistry of these species, detailed chemical kinetic models deriving from two alternative strategies for mechanism generation were developed and validated against available data. The first model represents a semi-lumped mechanism comprising 89 species and 366 reactions, whereas the latter is automatically generated to aggregate elemental steps based on a rate-based algorithm, and it contains 541 species and 27,334 reactions. Under the studied conditions, the two kinetic models fairly predicted ignition delay times and laminar burning velocity data of acetic acid and acetaldehyde. Few discrepancies were observed for ignition delay time at temperatures lower than 1300 K. However, the overall agreement between experimental measurements and numerical estimations allowed for the use of the two kinetic models to unravel the chemistry of the investigated species. Highlights Identification of key primary reactions for acetic acid and acetaldehyde Integration of an existing kinetic mechanism with selected reactions Development of a detailed kinetic mechanism through an automated algorithm Comparison of experimental and numerical data for overall reactivity Analysis of the chemistry of acetic acid and acetaldehyde
AbstractList Despite the beneficial impact of biofuels on most regulated pollutants and carbon dioxide emissions, their combustion results in the generation of undesired pollutants, such as acetaldehyde and acetic acid. To better understand the chemistry of these species, detailed chemical kinetic models deriving from two alternative strategies for mechanism generation were developed and validated against available data. The first model represents a semi-lumped mechanism comprising 89 species and 366 reactions, whereas the latter is automatically generated to aggregate elemental steps based on a rate-based algorithm, and it contains 541 species and 27,334 reactions. Under the studied conditions, the two kinetic models fairly predicted ignition delay times and laminar burning velocity data of acetic acid and acetaldehyde. Few discrepancies were observed for ignition delay time at temperatures lower than 1300 K. However, the overall agreement between experimental measurements and numerical estimations allowed for the use of the two kinetic models to unravel the chemistry of the investigated species. Highlights Identification of key primary reactions for acetic acid and acetaldehyde Integration of an existing kinetic mechanism with selected reactions Development of a detailed kinetic mechanism through an automated algorithm Comparison of experimental and numerical data for overall reactivity Analysis of the chemistry of acetic acid and acetaldehyde
Despite the beneficial impact of biofuels on most regulated pollutants and carbon dioxide emissions, their combustion results in the generation of undesired pollutants, such as acetaldehyde and acetic acid. To better understand the chemistry of these species, detailed chemical kinetic models deriving from two alternative strategies for mechanism generation were developed and validated against available data. The first model represents a semi-lumped mechanism comprising 89 species and 366 reactions, whereas the latter is automatically generated to aggregate elemental steps based on a rate-based algorithm, and it contains 541 species and 27,334 reactions. Under the studied conditions, the two kinetic models fairly predicted ignition delay times and laminar burning velocity data of acetic acid and acetaldehyde. Few discrepancies were observed for ignition delay time at temperatures lower than 1300 K. However, the overall agreement between experimental measurements and numerical estimations allowed for the use of the two kinetic models to unravel the chemistry of the investigated species.HighlightsIdentification of key primary reactions for acetic acid and acetaldehydeIntegration of an existing kinetic mechanism with selected reactionsDevelopment of a detailed kinetic mechanism through an automated algorithmComparison of experimental and numerical data for overall reactivityAnalysis of the chemistry of acetic acid and acetaldehyde
Author Pio, Gianmaria
Salzano, Ernesto
Wako, Fekadu Mosisa
Author_xml – sequence: 1
  givenname: Fekadu Mosisa
  surname: Wako
  fullname: Wako, Fekadu Mosisa
  organization: Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali, Università degli studi di Bologna
– sequence: 2
  givenname: Gianmaria
  orcidid: 0000-0002-0770-1710
  surname: Pio
  fullname: Pio, Gianmaria
  email: gianmaria.pio@unibo.it
  organization: Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali, Università degli studi di Bologna
– sequence: 3
  givenname: Ernesto
  orcidid: 0000-0002-3238-2491
  surname: Salzano
  fullname: Salzano, Ernesto
  organization: Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali, Università degli studi di Bologna
BookMark eNqFkE9LAzEQxYNUsK1-BGHB89Yks9ns4kUp_oOKl95DNslqyjapyRbZb2_W1osHPc0wvN-bmTdDE-edQeiS4AXBFb4mUBa8ArygmMKCEl7VHE7QlPCC5MBYPUl90uSj6AzNYtxgjCmnxRQVL16brrPuLfNtJpXpZafN-6BNJp3-HliVitWZ8ttmH3vr3Tk6bWUXzcWxztH64X69fMpXr4_Py7tVrgCqPi-VZlQ3hQTd1oYqyUkDDJThpilrTRllHNNGaawL0KqsG1mVCWGKKs4A5ujqYLsL_mNvYi82fh9c2iho-qSooaY8qW4OKhV8jMG0Qtlejmf2QdpOECzGlMRPSmJMSRxTSjT7Re-C3cow_MvdHjjrWh-28tOHToteDp0PbZBO2Sjgb4svmfB_hA
CitedBy_id crossref_primary_10_1016_j_fuel_2023_130747
crossref_primary_10_1016_j_elstat_2025_104148
crossref_primary_10_1016_j_supflu_2023_106149
crossref_primary_10_1039_D5CP02245B
Cites_doi 10.1002/kin.550160504
10.1021/jp054934r
10.1016/j.combustflame.2016.05.007
10.1016/j.fuel.2020.118553
10.1021/jp9637690
10.1002/kin.21154
10.1021/jp010698i
10.3390/en14123562
10.1007/978-1-4684-0186-8_5
10.1016/j.proci.2016.06.053
10.1021/j100316a037
10.1016/S0082-0784(06)80726-5
10.1021/jp063224y
10.1016/1352-2310(96)00102-1
10.2172/7073290
10.1002/kin.550060202
10.1021/jp303819e
10.1021/j100314a017
10.1016/S0010-2180(98)00111-4
10.1080/00102209208947215
10.1016/j.combustflame.2011.11.002
10.1016/j.combustflame.2010.12.008
10.1080/13647830.2019.1638972
10.1016/0010-2180(66)90022-8
10.1039/jr9490002877
10.1002/(SICI)1097-4601(1998)30:3<229::AID-KIN9>3.0.CO;2-U
10.1021/jp030001o
10.1002/kin.20603
10.1080/13647830.2019.1642519
10.1039/j29680001153
10.1016/j.combustflame.2012.07.008
10.1016/j.proci.2014.06.141
10.1146/annurev.pc.41.100190.002021
10.1016/j.combustflame.2011.12.017
10.1016/j.combustflame.2022.112080
10.1021/jp906918z
10.1021/jp067597a
10.1021/jp106446q
10.1021/acs.iecr.8b01377
10.1021/jp4095485
10.1021/j100248a033
10.1063/1.3253102
10.1016/S0082-0784(00)80542-1
10.1021/jp210722w
10.1016/S0360-1285(97)00034-8
10.1021/jp990998o
10.1016/S0082-0784(96)80252-9
10.1016/0360-1285(84)90118-7
10.1016/j.combustflame.2011.08.007
10.1021/ef901107f
10.1002/kin.20512
10.1016/j.proci.2018.06.137
10.1016/j.proci.2008.05.036
10.1039/B307050F
10.1021/jp906919w
10.1016/j.proci.2008.06.188
10.1039/C5RA26459F
10.1021/jp044679v
10.1016/j.proci.2014.06.136
10.1002/kin.20294
10.1016/j.pecs.2012.03.004
10.1021/jp5072814
10.1039/b205692e
10.1016/j.combustflame.2016.07.016
10.1021/cr00023a005
10.1016/j.combustflame.2015.09.014
10.1021/jp064922l
10.1016/j.cpc.2016.02.013
10.1016/j.jaap.2014.05.012
10.1016/j.combustflame.2005.01.003
10.1007/s11144-009-5511-y
10.1016/j.fuel.2015.09.031
10.1002/kin.20179
10.1016/j.combustflame.2017.07.013
10.1002/chin.201236258
10.1063/1.1744539
10.1016/j.proci.2014.06.112
10.1002/kin.550180508
10.1021/acs.jpca.7b07361
ContentType Journal Article
Copyright 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
2023 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
– notice: 2023 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
L7M
DOI 10.1080/13647830.2023.2178973
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1741-3559
EndPage 557
ExternalDocumentID 10_1080_13647830_2023_2178973
2178973
Genre Research Article
GroupedDBID .7F
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADMLS
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
J9A
KYCEM
LJTGL
M4Z
NA5
O9-
P2P
RIG
RNANH
RNS
RO9
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
7TB
8FD
FR3
H8D
L7M
ID FETCH-LOGICAL-c338t-6cd52db4a3df9e2ca71b353ce7eb69d2525702bcd0d43dc69ba86d525c2c7533
IEDL.DBID TFW
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000936378200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1364-7830
IngestDate Sun Nov 30 04:13:16 EST 2025
Sat Nov 29 02:42:25 EST 2025
Tue Nov 18 22:19:44 EST 2025
Mon Oct 20 23:45:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-6cd52db4a3df9e2ca71b353ce7eb69d2525702bcd0d43dc69ba86d525c2c7533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0770-1710
0000-0002-3238-2491
PQID 2830493927
PQPubID 2045308
PageCount 22
ParticipantIDs informaworld_taylorfrancis_310_1080_13647830_2023_2178973
proquest_journals_2830493927
crossref_citationtrail_10_1080_13647830_2023_2178973
crossref_primary_10_1080_13647830_2023_2178973
PublicationCentury 2000
PublicationDate 2023-06-07
PublicationDateYYYYMMDD 2023-06-07
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-07
  day: 07
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Combustion theory and modelling
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0072
CIT0071
CIT0030
CIT0074
CIT0073
CIT0032
CIT0076
CIT0031
CIT0075
CIT0034
CIT0078
CIT0077
CIT0070
Demore W. (CIT0088) 1997
Hoyle M. (CIT0023)
CIT0036
CIT0035
CIT0079
CIT0038
CIT0039
CIT0083
CIT0082
CIT0041
CIT0085
CIT0040
CIT0043
CIT0087
CIT0042
CIT0086
CIT0001
CIT0045
CIT0089
CIT0044
Faravelli T. (CIT0084) 2019
CIT0081
CIT0080
Song J. (CIT0037) 2004
CIT0003
CIT0047
CIT0002
CIT0046
CIT0005
CIT0049
CIT0004
CIT0048
CIT0007
CIT0006
CIT0009
CIT0008
CIT0050
CIT0052
CIT0010
CIT0054
CIT0053
CIT0012
CIT0056
CIT0011
CIT0055
Yaws C.L. (CIT0033) 2012
CIT0090
CIT0092
CIT0091
CIT0014
CIT0058
CIT0013
CIT0057
CIT0016
CIT0015
CIT0059
CIT0018
Goodwin D. (CIT0051) 2003; 14
CIT0017
CIT0019
CIT0061
CIT0060
CIT0063
CIT0062
CIT0021
CIT0065
CIT0020
CIT0064
CIT0067
CIT0022
CIT0066
CIT0025
CIT0069
CIT0024
CIT0068
CIT0027
CIT0026
CIT0029
CIT0028
References_xml – ident: CIT0040
– ident: CIT0025
  doi: 10.1002/kin.550160504
– ident: CIT0010
  doi: 10.1021/jp054934r
– ident: CIT0004
  doi: 10.1016/j.combustflame.2016.05.007
– ident: CIT0016
  doi: 10.1016/j.fuel.2020.118553
– ident: CIT0038
  doi: 10.1021/jp9637690
– ident: CIT0039
  doi: 10.1002/kin.21154
– ident: CIT0090
  doi: 10.1021/jp010698i
– ident: CIT0029
  doi: 10.3390/en14123562
– ident: CIT0015
  doi: 10.1007/978-1-4684-0186-8_5
– ident: CIT0043
  doi: 10.1016/j.proci.2016.06.053
– ident: CIT0083
  doi: 10.1021/j100316a037
– ident: CIT0054
– ident: CIT0062
  doi: 10.1016/S0082-0784(06)80726-5
– ident: CIT0050
– ident: CIT0060
  doi: 10.1021/jp063224y
– ident: CIT0017
  doi: 10.1016/1352-2310(96)00102-1
– ident: CIT0031
  doi: 10.2172/7073290
– ident: CIT0089
  doi: 10.1002/kin.550060202
– ident: CIT0032
  doi: 10.1021/jp303819e
– ident: CIT0078
  doi: 10.1021/j100314a017
– ident: CIT0077
– ident: CIT0091
  doi: 10.1016/S0010-2180(98)00111-4
– ident: CIT0063
  doi: 10.1080/00102209208947215
– ident: CIT0013
  doi: 10.1016/j.combustflame.2011.11.002
– ident: CIT0027
  doi: 10.1016/j.combustflame.2010.12.008
– ident: CIT0009
  doi: 10.1080/13647830.2019.1638972
– ident: CIT0024
  doi: 10.1016/0010-2180(66)90022-8
– ident: CIT0055
  doi: 10.1039/jr9490002877
– ident: CIT0007
  doi: 10.1002/(SICI)1097-4601(1998)30:3<229::AID-KIN9>3.0.CO;2-U
– ident: CIT0081
  doi: 10.1021/jp030001o
– ident: CIT0041
  doi: 10.1002/kin.20603
– ident: CIT0014
  doi: 10.1080/13647830.2019.1642519
– ident: CIT0056
  doi: 10.1039/j29680001153
– ident: CIT0021
  doi: 10.1016/j.combustflame.2012.07.008
– ident: CIT0005
  doi: 10.1016/j.proci.2014.06.141
– ident: CIT0011
  doi: 10.1146/annurev.pc.41.100190.002021
– ident: CIT0019
– ident: CIT0006
  doi: 10.1016/j.combustflame.2011.12.017
– ident: CIT0048
  doi: 10.1016/j.combustflame.2022.112080
– ident: CIT0072
  doi: 10.1021/jp906918z
– volume-title: Yaws’ critical property data for chemical engineers and chemists
  year: 2012
  ident: CIT0033
– ident: CIT0074
  doi: 10.1021/jp067597a
– ident: CIT0069
  doi: 10.1021/jp106446q
– ident: CIT0030
  doi: 10.1021/acs.iecr.8b01377
– volume-title: Building robust chemical reaction mechanisms: next generation of automatic model construction software
  year: 2004
  ident: CIT0037
– ident: CIT0068
  doi: 10.1021/jp4095485
– ident: CIT0085
  doi: 10.1021/j100248a033
– ident: CIT0086
  doi: 10.1063/1.3253102
– ident: CIT0079
  doi: 10.1016/S0082-0784(00)80542-1
– ident: CIT0034
  doi: 10.1021/jp210722w
– ident: CIT0008
  doi: 10.1016/S0360-1285(97)00034-8
– volume-title: Mathematical modelling of gas-phase complex reaction systems: pyrolysis and combustion
  year: 2019
  ident: CIT0084
– ident: CIT0092
  doi: 10.1021/jp990998o
– ident: CIT0065
  doi: 10.1016/S0082-0784(96)80252-9
– ident: CIT0087
  doi: 10.1016/0360-1285(84)90118-7
– ident: CIT0026
  doi: 10.1016/j.combustflame.2011.08.007
– ident: CIT0018
  doi: 10.1021/ef901107f
– ident: CIT0075
  doi: 10.1002/kin.20512
– ident: CIT0028
  doi: 10.1016/j.proci.2018.06.137
– ident: CIT0080
  doi: 10.1016/j.proci.2008.05.036
– ident: CIT0067
  doi: 10.1039/B307050F
– volume-title: Chemical kinetics and photochemical data for use in stratospheric modeling
  year: 1997
  ident: CIT0088
– ident: CIT0066
  doi: 10.1021/jp906919w
– ident: CIT0082
  doi: 10.1016/j.proci.2008.06.188
– ident: CIT0002
  doi: 10.1039/C5RA26459F
– ident: CIT0059
  doi: 10.1021/jp044679v
– volume-title: Investigation of the flammability limits of acetic acid at elevated temperature and pressure
  ident: CIT0023
– ident: CIT0052
  doi: 10.1016/j.proci.2014.06.136
– ident: CIT0053
  doi: 10.1002/kin.20294
– ident: CIT0012
  doi: 10.1016/j.pecs.2012.03.004
– volume: 14
  start-page: 2003
  year: 2003
  ident: CIT0051
  publication-title: Chem. Vapor Depos.
– ident: CIT0061
  doi: 10.1021/jp5072814
– ident: CIT0076
  doi: 10.1039/b205692e
– ident: CIT0042
  doi: 10.1016/j.combustflame.2016.07.016
– ident: CIT0044
  doi: 10.1021/cr00023a005
– ident: CIT0073
  doi: 10.1016/j.combustflame.2015.09.014
– ident: CIT0049
– ident: CIT0058
  doi: 10.1021/jp064922l
– ident: CIT0036
  doi: 10.1016/j.cpc.2016.02.013
– ident: CIT0022
  doi: 10.1016/j.jaap.2014.05.012
– ident: CIT0070
  doi: 10.1016/j.combustflame.2005.01.003
– ident: CIT0057
  doi: 10.1007/s11144-009-5511-y
– ident: CIT0046
  doi: 10.1016/j.fuel.2015.09.031
– volume-title: Kinetic Modelling of Biofuels: Pyrolysis and Auto-Ignition of Aldehydes
  ident: CIT0001
– ident: CIT0064
  doi: 10.1002/kin.20179
– ident: CIT0020
  doi: 10.1016/j.combustflame.2017.07.013
– ident: CIT0035
  doi: 10.1002/chin.201236258
– ident: CIT0045
  doi: 10.1063/1.1744539
– ident: CIT0071
  doi: 10.1016/j.proci.2014.06.112
– ident: CIT0003
  doi: 10.1002/kin.550180508
– ident: CIT0047
  doi: 10.1021/acs.jpca.7b07361
SSID ssj0002724
Score 2.3569214
Snippet Despite the beneficial impact of biofuels on most regulated pollutants and carbon dioxide emissions, their combustion results in the generation of undesired...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 536
SubjectTerms Acetaldehyde
Acetic acid
Acids
Algorithms
Biofuels
Carbon dioxide
Chemistry
Combustion
Delay time
Ignition
ignition delay times
kinetic modelling
laminar burning velocity
Mathematical models
Pollutants
Title Modelling of acetaldehyde and acetic acid combustion
URI https://www.tandfonline.com/doi/abs/10.1080/13647830.2023.2178973
https://www.proquest.com/docview/2830493927
Volume 27
WOSCitedRecordID wos000936378200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1741-3559
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002724
  issn: 1364-7830
  databaseCode: TFW
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yPOjBb3E6pQevnW2SfuQo4vAgw8PQ3ULzkuJAOlmr4H9vXpqODZEd9FRaeEl5yfsKL78fIdcMBC-iMgkNjXXI8wTCAkE_4zKhPFUUIneL__kxG4_z6VQ8-W7C2rdVYg1dtkARzlejcReq7jribmLEPM9ZNETq76HNqXORId6nDf1ompPRy9IX08zT2qY8RJHuDs9vo6xFpzXs0h--2gWg0f4__PoB2fPZZ3DbbpdDsmWqI7K7gkl4TDiyozmg7mBeBgUYm51r8_qlTWBndR9mYB8zHdipFZKBzasTMhndT-4eQk-tEIKtSZswBZ1QrXjBdCkMhSKLFUsYGKRIEZo6cjuqQEeaMw2pUEWeWpEEKNgCh52SXjWvzBkJENArNrkNhVj88NhW1EJozWwZZhgVUZ_wTqMSPOw4sl-8ydijk3Y6kagT6XXSJ8Ol2HuLu7FJQKwul2zcgUfZspNItkF20K2t9CZcS0RG48Kmj9n5H4a-IDv46prLsgHpNYsPc0m24bOZ1Ysrt1m_ARvT4U0
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFH_oFNSD3-J0ag9eO9sk_chRxDFx7lR0t9AmKQ6kk60K_vfmpe3YENlBT4WWl5SX5H2E934_gGsqOUu9PHA18ZXL4kC6KYJ--nlAWJgR6dku_udBNBzGoxFf7IXBskrMofMKKMLaajzceBndlMTd-Ah6HlOvi9zfXRNUxzyi67ARGF-L-PlJ72VujUlUE9uGzEWZpovnt2GW_NMSeukPa21dUG_vP35-H3brANS5rXbMAazp4hB2FmAJj4AhQZrF6nYmuZNKbQJ0pV-_lHbMtPbFWJrHWDlm7gz5wCbFMSS9--Su79bsCq40aWnphlIFRGUspSrnmsg08jMaUKmRJYUrYvntSCaVpxhVMuRZGodGJJBEmhyHnkCrmBT6FBzE9PJ1bLwh5j_MN0k150pRk4lpSrjXBtaoVMgaeRwJMN6EXwOUNjoRqBNR66QN3bnYewW9sUqAL66XKO2dR14RlAi6QrbTLK6oT_FMIDga4yaCjM7-MPQVbPWTp4EYPAwfz2EbP9las6gDrXL6oS9gU36W49n00u7cb3-G5Xc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFH_oFNGD3-J0ag9eO9sk_chR1KE4xg5DdwttkuJAtrFVwf_evCwdGyI76KnQ8pLy8vI-wsvvB3BNJWdZUES-JqHyWRpJP0PQz7CICItzIgN7i_-lnXQ6ab_Pu66bcOraKrGGLmZAEdZX4-Yeq6LqiLsJEfM8pUETqb-bJqdOeULXYcOkzjEaea_1OnfGJHG8tjHzUaa6xPPbMEvhaQm89IezthGotfcP_74Puy799G5n9nIAa3p4CDsLoIRHwJAezSJ1e6PCy6Q26bnSb19Ke2ZW-2IgzWOgPDN1jmxgo-Ex9FoPvbtH33Er-NIUpaUfSxURlbOMqoJrIrMkzGlEpUaOFK6IZbcjuVSBYlTJmOdZGhuRSBJpKhx6ArXhaKhPwUNEr1CnJhZi9cNCU1JzrhQ1dZimhAd1YJVGhXS440h_8S5CB09a6USgToTTSR2ac7HxDHhjlQBfXC5R2hOPYkZPIugK2Ua1tsLt4alAaDTGTf6YnP1h6CvY6t63RPup83wO2_jFNpolDaiVkw99AZvysxxMJ5fWbr8B0GHkKQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+of+acetaldehyde+and+acetic+acid+combustion&rft.jtitle=Combustion+theory+and+modelling&rft.au=Wako%2C+Fekadu+Mosisa&rft.au=Pio%2C+Gianmaria&rft.au=Salzano%2C+Ernesto&rft.date=2023-06-07&rft.issn=1364-7830&rft.eissn=1741-3559&rft.volume=27&rft.issue=4&rft.spage=536&rft.epage=557&rft_id=info:doi/10.1080%2F13647830.2023.2178973&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_13647830_2023_2178973
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-7830&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-7830&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-7830&client=summon