Supply Chain Design Optimization With Heterogeneous Risk-Aware Agents
Modern supply chain networks (SCN) are becoming increasingly complex, with vulnerable entities exposed to uncertain disruptions that affect local or global supply chain attributes. We model a stochastic mixed-integer program to minimize the overall cost of SCN design and operations, in response to l...
Saved in:
| Published in: | IEEE transactions on automation science and engineering Vol. 22; pp. 9872 - 9883 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
IEEE
01.01.2025
|
| Subjects: | |
| ISSN: | 1545-5955, 1558-3783 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Modern supply chain networks (SCN) are becoming increasingly complex, with vulnerable entities exposed to uncertain disruptions that affect local or global supply chain attributes. We model a stochastic mixed-integer program to minimize the overall cost of SCN design and operations, in response to lead-time and demand uncertainties following given probability distributions. We formulate a heterogeneous risk-aware model to trade off between cost and delay/shortage by considering different risk-attitudes amongst supply chain agents. In particular, we employ the Conditional Value-at-Risk (CVaR) as a coherent risk measure for quantifying risk while attaining solution tractability. We derive managerial insights from our numerical studies, finding the most benefit from diversifying agents in the root tier, since their disruptions affect all other tiers in the SCN. We find that as agents become more risk averse, the optimal solutions for key agents (such as assemblers), seek more backup suppliers and allocate extra capacities to achieve resiliency and reliability. Practitioners can use the outcomes of our framework and studies to guide SCN design considering heterogeneous risk attitudes between agents. Note to Practitioners-With growing uncertainties in global supply chains, inefficient responses to disruptions can lead to large penalties and long-term impacts such as customer dissatisfaction. This research is motivated by the challenges arising during the operations of supply chains under both lead-time and demand uncertainties. We employ optimization and centralized control approaches to optimize supply-chain network design as well as response strategies to disruptions, and our framework can handle heterogeneous risk preferences as it models the risk attitude of each individual entity or agent in supply chains. Our model can be utilized to completely or partially re-design resilient supply chains, to better prepare for unknown features and uncertainties. Our case study provides insights about risk-averse supply-chain designs that can reduce response cost, but increase initial investments on backups and redundancies. |
|---|---|
| AbstractList | Modern supply chain networks (SCN) are becoming increasingly complex, with vulnerable entities exposed to uncertain disruptions that affect local or global supply chain attributes. We model a stochastic mixed-integer program to minimize the overall cost of SCN design and operations, in response to lead-time and demand uncertainties following given probability distributions. We formulate a heterogeneous risk-aware model to trade off between cost and delay/shortage by considering different risk-attitudes amongst supply chain agents. In particular, we employ the Conditional Value-at-Risk (CVaR) as a coherent risk measure for quantifying risk while attaining solution tractability. We derive managerial insights from our numerical studies, finding the most benefit from diversifying agents in the root tier, since their disruptions affect all other tiers in the SCN. We find that as agents become more risk averse, the optimal solutions for key agents (such as assemblers), seek more backup suppliers and allocate extra capacities to achieve resiliency and reliability. Practitioners can use the outcomes of our framework and studies to guide SCN design considering heterogeneous risk attitudes between agents. Note to Practitioners-With growing uncertainties in global supply chains, inefficient responses to disruptions can lead to large penalties and long-term impacts such as customer dissatisfaction. This research is motivated by the challenges arising during the operations of supply chains under both lead-time and demand uncertainties. We employ optimization and centralized control approaches to optimize supply-chain network design as well as response strategies to disruptions, and our framework can handle heterogeneous risk preferences as it models the risk attitude of each individual entity or agent in supply chains. Our model can be utilized to completely or partially re-design resilient supply chains, to better prepare for unknown features and uncertainties. Our case study provides insights about risk-averse supply-chain designs that can reduce response cost, but increase initial investments on backups and redundancies. |
| Author | Tilbury, Dawn M. Shen, Siqian Estrada-Garcia, Juan-Alberto Barton, Kira |
| Author_xml | – sequence: 1 givenname: Juan-Alberto orcidid: 0000-0003-2308-1897 surname: Estrada-Garcia fullname: Estrada-Garcia, Juan-Alberto email: juanest@umich.edu organization: Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, USA – sequence: 2 givenname: Dawn M. orcidid: 0000-0002-2510-0556 surname: Tilbury fullname: Tilbury, Dawn M. email: tilbury@umich.edu organization: Robotics Department, Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA – sequence: 3 givenname: Kira orcidid: 0000-0003-1047-8078 surname: Barton fullname: Barton, Kira email: bartonkl@umich.edu organization: Robotics Department, Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA – sequence: 4 givenname: Siqian orcidid: 0000-0002-2854-163X surname: Shen fullname: Shen, Siqian email: siqian@umich.edu organization: Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, USA |
| BookMark | eNp9kMFKAzEQhoNUsK0-gOAhL7A12SSb5LjUaoVCwVY8Lsl20kbb3WWTIvXp7doexIOnGYb_m2G-AepVdQUI3VIyopTo-2W-mIxSkvIRE5QpKi5QnwqhEiYV63U9F4nQQlyhQQjv5JhUmvTRZLFvmu0BjzfGV_gBgl9XeN5Ev_NfJvq6wm8-bvAUIrT1Giqo9wG_-PCR5J-mBZwfZzFco0tntgFuznWIXh8ny_E0mc2fnsf5LCkZUzHJrJWCKskFWCVS50ymqc0cSTNaZqVRK-mc5YymxFIHGQetLRGKrQhfOSrYENHT3rKtQ2jBFU3rd6Y9FJQUnYei81B0HoqzhyMj_zCljz-vxdb47b_k3Yn0APDrktSKS8G-AQg9bUY |
| CODEN | ITASC7 |
| CitedBy_id | crossref_primary_10_1016_j_microc_2025_115326 |
| Cites_doi | 10.1109/TASE.2008.917156 10.1016/j.cie.2015.12.025 10.1002/mde.3867 10.1080/00207543.2023.2236726 10.1016/j.asoc.2023.110743 10.1016/j.dss.2010.11.020 10.1137/S1052623499363220 10.1016/j.cor.2011.03.017 10.1109/CASE56687.2023.10260370 10.1109/TASE.2023.3339171 10.1016/j.apmrv.2018.10.004 10.1016/j.ejor.2003.11.029 10.1109/TASE.2016.2545110 10.1111/itor.13267 10.1007/s10479-013-1420-6 10.1109/TASE.2010.2071414 10.1109/LRA.2024.3388838 10.1016/j.ijpe.2020.107755 10.1016/j.apm.2010.07.013 10.1080/00207543.2012.738942 10.1109/TASE.2004.829414 10.21314/JOR.2000.038 10.1016/j.tre.2014.12.015 10.1016/j.pursup.2010.05.001 10.1109/TASE.2015.2445316 10.1016/j.compchemeng.2008.05.004 10.1016/s0925-5273(98)00079-6 10.1137/1.9781611976595 10.1007/s10479-014-1756-6 10.1016/j.tre.2009.12.004 10.1016/j.ejor.2017.04.009 10.1016/j.ijpe.2011.04.002 10.1080/00207543.2023.2178370 10.1109/TASE.2020.2977452 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TASE.2024.3513815 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-3783 |
| EndPage | 9883 |
| ExternalDocumentID | 10_1109_TASE_2024_3513815 10798475 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: United States National Science Foundation (NSF) grantid: CMMI-2034974 funderid: 10.13039/100000001 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION |
| ID | FETCH-LOGICAL-c338t-6bb7518745eb852ffa691b6f0261c6ca8d7ffb43120b1fe64e99b0583d04df153 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001377356400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-5955 |
| IngestDate | Sat Nov 29 08:06:21 EST 2025 Tue Nov 18 22:44:13 EST 2025 Wed Aug 27 02:05:00 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c338t-6bb7518745eb852ffa691b6f0261c6ca8d7ffb43120b1fe64e99b0583d04df153 |
| ORCID | 0000-0003-1047-8078 0000-0002-2854-163X 0000-0003-2308-1897 0000-0002-2510-0556 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1109_TASE_2024_3513815 ieee_primary_10798475 crossref_citationtrail_10_1109_TASE_2024_3513815 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on automation science and engineering |
| PublicationTitleAbbrev | TASE |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 Li (ref26) 2024; 31 ref12 ref15 ref36 ref31 Sawik (ref19) 2024; 62 ref11 ref10 Liu (ref25) 2023; 147 ref32 ref2 ref1 ref17 ref16 Shen (ref30) 2024; 184 ref18 You (ref20) 2008; 32 Fattahi (ref22) 2020; 230 Estrada-Garcia (ref35) 2023 Shapiro (ref34) 2021 ref23 Noyan (ref33) 2012; 39 ref21 ref27 Sadghiani (ref29) 2015; 75 ref8 ref9 ref4 Park (ref28) 2010; 46 ref3 ref6 ref5 Govindan (ref7) 2017; 263 Pishvaee (ref24) 2011; 35 Eskigun (ref14) 2005; 165 |
| References_xml | – volume-title: Heterogeneous Risk-Averse Supply Chain Optimization Python-Gurobi Implementation year: 2023 ident: ref35 – ident: ref23 doi: 10.1109/TASE.2008.917156 – ident: ref10 doi: 10.1016/j.cie.2015.12.025 – ident: ref3 doi: 10.1002/mde.3867 – volume: 62 start-page: 2853 issue: 8 year: 2024 ident: ref19 article-title: Risk-averse decision-making to maintain supply chain viability under propagated disruptions publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2023.2236726 – volume: 147 year: 2023 ident: ref25 article-title: Risk-averse two-stage stochastic programming-based closed-loop supply chain network design under uncertain demand publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.110743 – ident: ref12 doi: 10.1016/j.dss.2010.11.020 – ident: ref31 doi: 10.1137/S1052623499363220 – volume: 39 start-page: 541 issue: 3 year: 2012 ident: ref33 article-title: Risk-averse two-stage stochastic programming with an application to disaster management publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2011.03.017 – ident: ref5 doi: 10.1109/CASE56687.2023.10260370 – ident: ref27 doi: 10.1109/TASE.2023.3339171 – ident: ref6 doi: 10.1016/j.apmrv.2018.10.004 – volume: 165 start-page: 182 issue: 1 year: 2005 ident: ref14 article-title: Outbound supply chain network design with mode selection, lead times and capacitated vehicle distribution centers publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2003.11.029 – ident: ref18 doi: 10.1109/TASE.2016.2545110 – volume: 184 year: 2024 ident: ref30 article-title: A multi-objective optimization model for medical waste recycling network design under uncertainties publication-title: Transp. Res. E, Logistics Transp. Rev. – volume: 31 start-page: 3459 issue: 5 year: 2024 ident: ref26 article-title: Two-stage distributionally robust optimization model for a pharmaceutical cold supply chain network design problem publication-title: Int. Trans. Oper. Res. doi: 10.1111/itor.13267 – ident: ref2 doi: 10.1007/s10479-013-1420-6 – ident: ref17 doi: 10.1109/TASE.2010.2071414 – ident: ref36 doi: 10.1109/LRA.2024.3388838 – volume: 230 year: 2020 ident: ref22 article-title: Stochastic optimization of disruption-driven supply chain network design with a new resilience metric publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2020.107755 – volume: 35 start-page: 637 issue: 2 year: 2011 ident: ref24 article-title: A robust optimization approach to closed-loop supply chain network design under uncertainty publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2010.07.013 – ident: ref1 doi: 10.1080/00207543.2012.738942 – ident: ref13 doi: 10.1109/TASE.2004.829414 – ident: ref32 doi: 10.21314/JOR.2000.038 – volume: 75 start-page: 95 year: 2015 ident: ref29 article-title: Retail supply chain network design under operational and disruption risks publication-title: Transp. Res. E, Logistics Transp. Rev. doi: 10.1016/j.tre.2014.12.015 – ident: ref9 doi: 10.1016/j.pursup.2010.05.001 – ident: ref16 doi: 10.1109/TASE.2015.2445316 – volume: 32 start-page: 3090 issue: 12 year: 2008 ident: ref20 article-title: Design of responsive supply chains under demand uncertainty publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2008.05.004 – ident: ref8 doi: 10.1016/s0925-5273(98)00079-6 – volume-title: Lectures on Stochastic Programming: Modeling and Theory year: 2021 ident: ref34 doi: 10.1137/1.9781611976595 – ident: ref4 doi: 10.1007/s10479-014-1756-6 – volume: 46 start-page: 563 issue: 5 year: 2010 ident: ref28 article-title: A three-level supply chain network design model with risk-pooling and lead times publication-title: Transp. Res. E, Logistics Transp. Rev. doi: 10.1016/j.tre.2009.12.004 – volume: 263 start-page: 108 issue: 1 year: 2017 ident: ref7 article-title: Supply chain network design under uncertainty: A comprehensive review and future research directions publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2017.04.009 – ident: ref21 doi: 10.1016/j.ijpe.2011.04.002 – ident: ref11 doi: 10.1080/00207543.2023.2178370 – ident: ref15 doi: 10.1109/TASE.2020.2977452 |
| SSID | ssj0024890 |
| Score | 2.3955913 |
| Snippet | Modern supply chain networks (SCN) are becoming increasingly complex, with vulnerable entities exposed to uncertain disruptions that affect local or global... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 9872 |
| SubjectTerms | conditional value-at-risk (CVaR) Costs Design optimization Lead Optimization Optimization models risk-averse optimization stochastic integer programming Stochastic processes Supply chain network design Supply chains Termination of employment Uncertainty Vectors |
| Title | Supply Chain Design Optimization With Heterogeneous Risk-Aware Agents |
| URI | https://ieeexplore.ieee.org/document/10798475 |
| Volume | 22 |
| WOSCitedRecordID | wos001377356400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-3783 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024890 issn: 1545-5955 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgYoCBzyLKlzwwIbk4TRzbY1RadUAFQRHdotg5qxXQojYF8e-xnQBlAIktihwpujh398537yF0pg0HwXVIgpwBiQAyIksiZIvFJDdhoDy7_hXv98VwKG-qYXU_CwMAvvkMmu7Sn-XnU71wpTL7h3NpvSlbRauc83JY65tYT_iCiksJCJOMVUeYAZUXg-SuY6FgK2qGLLAhiv0IQkuqKj6odLf--TrbaLPKHnFSfu4dtAKTXbSxxCm4hzpep_Mdt0cW8-NL36CBr61jeK4mLvHDuBjhnmuDmdrdAxb649vx_JEkb9kMcOJmreZ1dN_tDNo9UmklEG1BZkFipdwBCo8YKMFaxmSxDFRsHMTSsc5Ezo1RNltoURUYiCOQUlEmwpxGubFubx_VJtMJHCBshIgyyrWFYuCEiRWjWaRynmnrF2PDGoh-Gi_VFZG407N4Sj2goDJ19k6dvdPK3g10_vXIS8mi8dfiurP10sLSzIe_3D9C6y0nyuvrIseoVswWcILW9Gsxns9O_Sb5AEo-uKM |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86BfXBz4nzMw8-CdV-JE3zWObGxDlFJ-6tNOmFDXWTrVP8703SqvNBwbdSUijX9O5-l7vfD6FjqRhETAaOl1FwCEDq8IIIWWMxzlTgCcuu32adTtTr8ZtyWN3OwgCAbT6DU3Npz_KzkZyaUpn-wxnX3pTOowVKiO8V41rf1HqRLamYpMChnNLyENNz-Vk3vmtoMOiT04B6OkjRH2FoRlfFhpXm2j9faB2tlvkjjosPvoHmYLiJVmZYBbdQwyp1vuN6X6N-fG5bNPC1dg3P5cwlfhjkfdwyjTAjvX9Ag398O5g8OvFbOgYcm2mrSRXdNxvdessp1RIcqWFm7oRCmCMURiiIiPpKpSH3RKgMyJKhTKOMKSV0vuC7wlMQEuBcuDQKMpdkSju-bVQZjoawg7CKIpK6TGowBkaaWFA3JSJjqdSeMVS0htxP4yWypBI3ihZPiYUULk-MvRNj76S0dw2dfD3yUvBo_LW4amw9s7Aw8-4v94_QUqt71U7aF53LPbTsG4leWyXZR5V8PIUDtChf88FkfGg3zAcUibvq |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supply+Chain+Design+Optimization+With+Heterogeneous+Risk-Aware+Agents&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Estrada-Garcia%2C+Juan-Alberto&rft.au=Tilbury%2C+Dawn+M.&rft.au=Barton%2C+Kira&rft.au=Shen%2C+Siqian&rft.date=2025-01-01&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=22&rft.spage=9872&rft.epage=9883&rft_id=info:doi/10.1109%2FTASE.2024.3513815&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TASE_2024_3513815 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon |