Supply Chain Design Optimization With Heterogeneous Risk-Aware Agents

Modern supply chain networks (SCN) are becoming increasingly complex, with vulnerable entities exposed to uncertain disruptions that affect local or global supply chain attributes. We model a stochastic mixed-integer program to minimize the overall cost of SCN design and operations, in response to l...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automation science and engineering Vol. 22; pp. 9872 - 9883
Main Authors: Estrada-Garcia, Juan-Alberto, Tilbury, Dawn M., Barton, Kira, Shen, Siqian
Format: Journal Article
Language:English
Published: IEEE 01.01.2025
Subjects:
ISSN:1545-5955, 1558-3783
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Modern supply chain networks (SCN) are becoming increasingly complex, with vulnerable entities exposed to uncertain disruptions that affect local or global supply chain attributes. We model a stochastic mixed-integer program to minimize the overall cost of SCN design and operations, in response to lead-time and demand uncertainties following given probability distributions. We formulate a heterogeneous risk-aware model to trade off between cost and delay/shortage by considering different risk-attitudes amongst supply chain agents. In particular, we employ the Conditional Value-at-Risk (CVaR) as a coherent risk measure for quantifying risk while attaining solution tractability. We derive managerial insights from our numerical studies, finding the most benefit from diversifying agents in the root tier, since their disruptions affect all other tiers in the SCN. We find that as agents become more risk averse, the optimal solutions for key agents (such as assemblers), seek more backup suppliers and allocate extra capacities to achieve resiliency and reliability. Practitioners can use the outcomes of our framework and studies to guide SCN design considering heterogeneous risk attitudes between agents. Note to Practitioners-With growing uncertainties in global supply chains, inefficient responses to disruptions can lead to large penalties and long-term impacts such as customer dissatisfaction. This research is motivated by the challenges arising during the operations of supply chains under both lead-time and demand uncertainties. We employ optimization and centralized control approaches to optimize supply-chain network design as well as response strategies to disruptions, and our framework can handle heterogeneous risk preferences as it models the risk attitude of each individual entity or agent in supply chains. Our model can be utilized to completely or partially re-design resilient supply chains, to better prepare for unknown features and uncertainties. Our case study provides insights about risk-averse supply-chain designs that can reduce response cost, but increase initial investments on backups and redundancies.
AbstractList Modern supply chain networks (SCN) are becoming increasingly complex, with vulnerable entities exposed to uncertain disruptions that affect local or global supply chain attributes. We model a stochastic mixed-integer program to minimize the overall cost of SCN design and operations, in response to lead-time and demand uncertainties following given probability distributions. We formulate a heterogeneous risk-aware model to trade off between cost and delay/shortage by considering different risk-attitudes amongst supply chain agents. In particular, we employ the Conditional Value-at-Risk (CVaR) as a coherent risk measure for quantifying risk while attaining solution tractability. We derive managerial insights from our numerical studies, finding the most benefit from diversifying agents in the root tier, since their disruptions affect all other tiers in the SCN. We find that as agents become more risk averse, the optimal solutions for key agents (such as assemblers), seek more backup suppliers and allocate extra capacities to achieve resiliency and reliability. Practitioners can use the outcomes of our framework and studies to guide SCN design considering heterogeneous risk attitudes between agents. Note to Practitioners-With growing uncertainties in global supply chains, inefficient responses to disruptions can lead to large penalties and long-term impacts such as customer dissatisfaction. This research is motivated by the challenges arising during the operations of supply chains under both lead-time and demand uncertainties. We employ optimization and centralized control approaches to optimize supply-chain network design as well as response strategies to disruptions, and our framework can handle heterogeneous risk preferences as it models the risk attitude of each individual entity or agent in supply chains. Our model can be utilized to completely or partially re-design resilient supply chains, to better prepare for unknown features and uncertainties. Our case study provides insights about risk-averse supply-chain designs that can reduce response cost, but increase initial investments on backups and redundancies.
Author Tilbury, Dawn M.
Shen, Siqian
Estrada-Garcia, Juan-Alberto
Barton, Kira
Author_xml – sequence: 1
  givenname: Juan-Alberto
  orcidid: 0000-0003-2308-1897
  surname: Estrada-Garcia
  fullname: Estrada-Garcia, Juan-Alberto
  email: juanest@umich.edu
  organization: Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, USA
– sequence: 2
  givenname: Dawn M.
  orcidid: 0000-0002-2510-0556
  surname: Tilbury
  fullname: Tilbury, Dawn M.
  email: tilbury@umich.edu
  organization: Robotics Department, Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
– sequence: 3
  givenname: Kira
  orcidid: 0000-0003-1047-8078
  surname: Barton
  fullname: Barton, Kira
  email: bartonkl@umich.edu
  organization: Robotics Department, Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
– sequence: 4
  givenname: Siqian
  orcidid: 0000-0002-2854-163X
  surname: Shen
  fullname: Shen, Siqian
  email: siqian@umich.edu
  organization: Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, USA
BookMark eNp9kMFKAzEQhoNUsK0-gOAhL7A12SSb5LjUaoVCwVY8Lsl20kbb3WWTIvXp7doexIOnGYb_m2G-AepVdQUI3VIyopTo-2W-mIxSkvIRE5QpKi5QnwqhEiYV63U9F4nQQlyhQQjv5JhUmvTRZLFvmu0BjzfGV_gBgl9XeN5Ev_NfJvq6wm8-bvAUIrT1Giqo9wG_-PCR5J-mBZwfZzFco0tntgFuznWIXh8ny_E0mc2fnsf5LCkZUzHJrJWCKskFWCVS50ymqc0cSTNaZqVRK-mc5YymxFIHGQetLRGKrQhfOSrYENHT3rKtQ2jBFU3rd6Y9FJQUnYei81B0HoqzhyMj_zCljz-vxdb47b_k3Yn0APDrktSKS8G-AQg9bUY
CODEN ITASC7
CitedBy_id crossref_primary_10_1016_j_microc_2025_115326
Cites_doi 10.1109/TASE.2008.917156
10.1016/j.cie.2015.12.025
10.1002/mde.3867
10.1080/00207543.2023.2236726
10.1016/j.asoc.2023.110743
10.1016/j.dss.2010.11.020
10.1137/S1052623499363220
10.1016/j.cor.2011.03.017
10.1109/CASE56687.2023.10260370
10.1109/TASE.2023.3339171
10.1016/j.apmrv.2018.10.004
10.1016/j.ejor.2003.11.029
10.1109/TASE.2016.2545110
10.1111/itor.13267
10.1007/s10479-013-1420-6
10.1109/TASE.2010.2071414
10.1109/LRA.2024.3388838
10.1016/j.ijpe.2020.107755
10.1016/j.apm.2010.07.013
10.1080/00207543.2012.738942
10.1109/TASE.2004.829414
10.21314/JOR.2000.038
10.1016/j.tre.2014.12.015
10.1016/j.pursup.2010.05.001
10.1109/TASE.2015.2445316
10.1016/j.compchemeng.2008.05.004
10.1016/s0925-5273(98)00079-6
10.1137/1.9781611976595
10.1007/s10479-014-1756-6
10.1016/j.tre.2009.12.004
10.1016/j.ejor.2017.04.009
10.1016/j.ijpe.2011.04.002
10.1080/00207543.2023.2178370
10.1109/TASE.2020.2977452
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TASE.2024.3513815
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3783
EndPage 9883
ExternalDocumentID 10_1109_TASE_2024_3513815
10798475
Genre orig-research
GrantInformation_xml – fundername: United States National Science Foundation (NSF)
  grantid: CMMI-2034974
  funderid: 10.13039/100000001
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
ID FETCH-LOGICAL-c338t-6bb7518745eb852ffa691b6f0261c6ca8d7ffb43120b1fe64e99b0583d04df153
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001377356400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-5955
IngestDate Sat Nov 29 08:06:21 EST 2025
Tue Nov 18 22:44:13 EST 2025
Wed Aug 27 02:05:00 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-6bb7518745eb852ffa691b6f0261c6ca8d7ffb43120b1fe64e99b0583d04df153
ORCID 0000-0003-1047-8078
0000-0002-2854-163X
0000-0003-2308-1897
0000-0002-2510-0556
PageCount 12
ParticipantIDs crossref_primary_10_1109_TASE_2024_3513815
ieee_primary_10798475
crossref_citationtrail_10_1109_TASE_2024_3513815
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
Li (ref26) 2024; 31
ref12
ref15
ref36
ref31
Sawik (ref19) 2024; 62
ref11
ref10
Liu (ref25) 2023; 147
ref32
ref2
ref1
ref17
ref16
Shen (ref30) 2024; 184
ref18
You (ref20) 2008; 32
Fattahi (ref22) 2020; 230
Estrada-Garcia (ref35) 2023
Shapiro (ref34) 2021
ref23
Noyan (ref33) 2012; 39
ref21
ref27
Sadghiani (ref29) 2015; 75
ref8
ref9
ref4
Park (ref28) 2010; 46
ref3
ref6
ref5
Govindan (ref7) 2017; 263
Pishvaee (ref24) 2011; 35
Eskigun (ref14) 2005; 165
References_xml – volume-title: Heterogeneous Risk-Averse Supply Chain Optimization Python-Gurobi Implementation
  year: 2023
  ident: ref35
– ident: ref23
  doi: 10.1109/TASE.2008.917156
– ident: ref10
  doi: 10.1016/j.cie.2015.12.025
– ident: ref3
  doi: 10.1002/mde.3867
– volume: 62
  start-page: 2853
  issue: 8
  year: 2024
  ident: ref19
  article-title: Risk-averse decision-making to maintain supply chain viability under propagated disruptions
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2023.2236726
– volume: 147
  year: 2023
  ident: ref25
  article-title: Risk-averse two-stage stochastic programming-based closed-loop supply chain network design under uncertain demand
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.110743
– ident: ref12
  doi: 10.1016/j.dss.2010.11.020
– ident: ref31
  doi: 10.1137/S1052623499363220
– volume: 39
  start-page: 541
  issue: 3
  year: 2012
  ident: ref33
  article-title: Risk-averse two-stage stochastic programming with an application to disaster management
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2011.03.017
– ident: ref5
  doi: 10.1109/CASE56687.2023.10260370
– ident: ref27
  doi: 10.1109/TASE.2023.3339171
– ident: ref6
  doi: 10.1016/j.apmrv.2018.10.004
– volume: 165
  start-page: 182
  issue: 1
  year: 2005
  ident: ref14
  article-title: Outbound supply chain network design with mode selection, lead times and capacitated vehicle distribution centers
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2003.11.029
– ident: ref18
  doi: 10.1109/TASE.2016.2545110
– volume: 184
  year: 2024
  ident: ref30
  article-title: A multi-objective optimization model for medical waste recycling network design under uncertainties
  publication-title: Transp. Res. E, Logistics Transp. Rev.
– volume: 31
  start-page: 3459
  issue: 5
  year: 2024
  ident: ref26
  article-title: Two-stage distributionally robust optimization model for a pharmaceutical cold supply chain network design problem
  publication-title: Int. Trans. Oper. Res.
  doi: 10.1111/itor.13267
– ident: ref2
  doi: 10.1007/s10479-013-1420-6
– ident: ref17
  doi: 10.1109/TASE.2010.2071414
– ident: ref36
  doi: 10.1109/LRA.2024.3388838
– volume: 230
  year: 2020
  ident: ref22
  article-title: Stochastic optimization of disruption-driven supply chain network design with a new resilience metric
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2020.107755
– volume: 35
  start-page: 637
  issue: 2
  year: 2011
  ident: ref24
  article-title: A robust optimization approach to closed-loop supply chain network design under uncertainty
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2010.07.013
– ident: ref1
  doi: 10.1080/00207543.2012.738942
– ident: ref13
  doi: 10.1109/TASE.2004.829414
– ident: ref32
  doi: 10.21314/JOR.2000.038
– volume: 75
  start-page: 95
  year: 2015
  ident: ref29
  article-title: Retail supply chain network design under operational and disruption risks
  publication-title: Transp. Res. E, Logistics Transp. Rev.
  doi: 10.1016/j.tre.2014.12.015
– ident: ref9
  doi: 10.1016/j.pursup.2010.05.001
– ident: ref16
  doi: 10.1109/TASE.2015.2445316
– volume: 32
  start-page: 3090
  issue: 12
  year: 2008
  ident: ref20
  article-title: Design of responsive supply chains under demand uncertainty
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2008.05.004
– ident: ref8
  doi: 10.1016/s0925-5273(98)00079-6
– volume-title: Lectures on Stochastic Programming: Modeling and Theory
  year: 2021
  ident: ref34
  doi: 10.1137/1.9781611976595
– ident: ref4
  doi: 10.1007/s10479-014-1756-6
– volume: 46
  start-page: 563
  issue: 5
  year: 2010
  ident: ref28
  article-title: A three-level supply chain network design model with risk-pooling and lead times
  publication-title: Transp. Res. E, Logistics Transp. Rev.
  doi: 10.1016/j.tre.2009.12.004
– volume: 263
  start-page: 108
  issue: 1
  year: 2017
  ident: ref7
  article-title: Supply chain network design under uncertainty: A comprehensive review and future research directions
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2017.04.009
– ident: ref21
  doi: 10.1016/j.ijpe.2011.04.002
– ident: ref11
  doi: 10.1080/00207543.2023.2178370
– ident: ref15
  doi: 10.1109/TASE.2020.2977452
SSID ssj0024890
Score 2.3955913
Snippet Modern supply chain networks (SCN) are becoming increasingly complex, with vulnerable entities exposed to uncertain disruptions that affect local or global...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 9872
SubjectTerms conditional value-at-risk (CVaR)
Costs
Design optimization
Lead
Optimization
Optimization models
risk-averse optimization
stochastic integer programming
Stochastic processes
Supply chain network design
Supply chains
Termination of employment
Uncertainty
Vectors
Title Supply Chain Design Optimization With Heterogeneous Risk-Aware Agents
URI https://ieeexplore.ieee.org/document/10798475
Volume 22
WOSCitedRecordID wos001377356400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-3783
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024890
  issn: 1545-5955
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgYoCBzyLKlzwwIbk4TRzbY1RadUAFQRHdotg5qxXQojYF8e-xnQBlAIktihwpujh398537yF0pg0HwXVIgpwBiQAyIksiZIvFJDdhoDy7_hXv98VwKG-qYXU_CwMAvvkMmu7Sn-XnU71wpTL7h3NpvSlbRauc83JY65tYT_iCiksJCJOMVUeYAZUXg-SuY6FgK2qGLLAhiv0IQkuqKj6odLf--TrbaLPKHnFSfu4dtAKTXbSxxCm4hzpep_Mdt0cW8-NL36CBr61jeK4mLvHDuBjhnmuDmdrdAxb649vx_JEkb9kMcOJmreZ1dN_tDNo9UmklEG1BZkFipdwBCo8YKMFaxmSxDFRsHMTSsc5Ezo1RNltoURUYiCOQUlEmwpxGubFubx_VJtMJHCBshIgyyrWFYuCEiRWjWaRynmnrF2PDGoh-Gi_VFZG407N4Sj2goDJ19k6dvdPK3g10_vXIS8mi8dfiurP10sLSzIe_3D9C6y0nyuvrIseoVswWcILW9Gsxns9O_Sb5AEo-uKM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86BfXBz4nzMw8-CdV-JE3zWObGxDlFJ-6tNOmFDXWTrVP8703SqvNBwbdSUijX9O5-l7vfD6FjqRhETAaOl1FwCEDq8IIIWWMxzlTgCcuu32adTtTr8ZtyWN3OwgCAbT6DU3Npz_KzkZyaUpn-wxnX3pTOowVKiO8V41rf1HqRLamYpMChnNLyENNz-Vk3vmtoMOiT04B6OkjRH2FoRlfFhpXm2j9faB2tlvkjjosPvoHmYLiJVmZYBbdQwyp1vuN6X6N-fG5bNPC1dg3P5cwlfhjkfdwyjTAjvX9Ag398O5g8OvFbOgYcm2mrSRXdNxvdessp1RIcqWFm7oRCmCMURiiIiPpKpSH3RKgMyJKhTKOMKSV0vuC7wlMQEuBcuDQKMpdkSju-bVQZjoawg7CKIpK6TGowBkaaWFA3JSJjqdSeMVS0htxP4yWypBI3ihZPiYUULk-MvRNj76S0dw2dfD3yUvBo_LW4amw9s7Aw8-4v94_QUqt71U7aF53LPbTsG4leWyXZR5V8PIUDtChf88FkfGg3zAcUibvq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supply+Chain+Design+Optimization+With+Heterogeneous+Risk-Aware+Agents&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Estrada-Garcia%2C+Juan-Alberto&rft.au=Tilbury%2C+Dawn+M.&rft.au=Barton%2C+Kira&rft.au=Shen%2C+Siqian&rft.date=2025-01-01&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=22&rft.spage=9872&rft.epage=9883&rft_id=info:doi/10.1109%2FTASE.2024.3513815&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TASE_2024_3513815
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon