Robust optimality conditions and duality for nonsmooth multiobjective fractional semi-infinite programming problems with uncertain data

In this article, some Karush-Kuhn-Tucker type robust optimality conditions and duality for an uncertain nonsmooth multiobjective fractional semi-infinite programming problem ((UMFP), for short) are established. First, we provide, by combining robust optimization and the robust limiting constraint qu...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Optimization Ročník 72; číslo 7; s. 1745 - 1775
Hlavní autori: Thu Thuy, Nguyen Thi, Van Su, Tran
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Philadelphia Taylor & Francis 03.07.2023
Taylor & Francis LLC
Predmet:
ISSN:0233-1934, 1029-4945
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this article, some Karush-Kuhn-Tucker type robust optimality conditions and duality for an uncertain nonsmooth multiobjective fractional semi-infinite programming problem ((UMFP), for short) are established. First, we provide, by combining robust optimization and the robust limiting constraint qualification, robust necessary optimality conditions in terms of Mordukhovich's subdifferentials. Under suitable assumptions on the generalized convexity/the strictly generalized convexity, robust necessary optimality condition becomes robust sufficient optimality condition. Second, we formulate types of Mond-Weir and Wolfe robust dual problem for (UMFP) via the Mordukhovich subdifferentials. Finally, as an application, we establish weak/strong/converse robust duality theorems for the problem (UMFP) and its Mond-Weir and Wolfe types dual problem. Some illustrative examples are also provided for our findings.
AbstractList In this article, some Karush-Kuhn-Tucker type robust optimality conditions and duality for an uncertain nonsmooth multiobjective fractional semi-infinite programming problem ((UMFP), for short) are established. First, we provide, by combining robust optimization and the robust limiting constraint qualification, robust necessary optimality conditions in terms of Mordukhovich's subdifferentials. Under suitable assumptions on the generalized convexity/the strictly generalized convexity, robust necessary optimality condition becomes robust sufficient optimality condition. Second, we formulate types of Mond-Weir and Wolfe robust dual problem for (UMFP) via the Mordukhovich subdifferentials. Finally, as an application, we establish weak/strong/converse robust duality theorems for the problem (UMFP) and its Mond-Weir and Wolfe types dual problem. Some illustrative examples are also provided for our findings.
Author Van Su, Tran
Thu Thuy, Nguyen Thi
Author_xml – sequence: 1
  givenname: Nguyen Thi
  surname: Thu Thuy
  fullname: Thu Thuy, Nguyen Thi
  organization: Hanoi University of Science and Technology
– sequence: 2
  givenname: Tran
  surname: Van Su
  fullname: Van Su, Tran
  email: sutrantud@gmail.com
  organization: Quang Nam University
BookMark eNqFkE1LHTEUhoMoeNX-BCHQ9Wg-ZyZ00yLVFoRCsetwJsloLjPJNclU7i_o3zbDtRsX7SYJ4X3ec3jO0HGIwSF0SckVJT25Joxzqri4YoSxevCeSnGENpQw1Qgl5DHarJlmDZ2is5y3hDDaMrFBf37GYckFx13xM0y-7LGJwfriY8gYgsV2OXyPMeE6OM8xlic8L1ONDFtniv_t8JjArAhMOLvZNz6MPvji8C7FxwTz7MPj-h4mN2f84mvDEoxLBXzAFgpcoJMRpuw-vN3n6Nft14ebb839j7vvN1_uG8N5X5oWhGuFtKq1YlDcOg6D4VKSDqxRLUhpKQgrYbSiN_3YUUXbgTrZjVQ61fJz9PHQW5d5XlwuehuXVPfOmvWs453kQtWUPKRMijknN-pdqnrSXlOiV-f6r3O9Otdvziv36R1nfIFVTEngp__Snw90tRfTDC8xTVYX2E8xVcHB-Kz5vyteAdOmoJ4
CitedBy_id crossref_primary_10_1007_s11117_024_01077_w
crossref_primary_10_1007_s11117_025_01116_0
crossref_primary_10_1080_02331934_2022_2122717
crossref_primary_10_1007_s10898_024_01415_y
crossref_primary_10_1007_s40314_024_02830_3
crossref_primary_10_1080_00036811_2025_2558006
crossref_primary_10_12677_AAM_2023_129389
crossref_primary_10_1088_1742_6596_2747_1_012015
crossref_primary_10_3390_axioms12111029
Cites_doi 10.4134/BKMS.2014.51.1.287
10.1007/3-540-31246-3
10.1186/s13660-019-1997-7
10.1007/3-540-31247-1
10.1007/s10957-011-9896-1
10.1007/s10957-014-0633-4
10.1287/moor.23.4.769
10.1080/02331934.2019.1632250
10.1080/01630563.2014.884584
10.1007/978-3-319-92775-6
10.1007/s10479-014-1552-3
10.1016/j.ejor.2012.09.006
10.1007/s10957-019-01607-7
10.3934/jimo.2018089
10.1137/080734510
10.1007/s10957-021-01829-8
10.1007/s10107-013-0668-6
10.1137/19M1251461
10.1080/02331934.2021.2002328
10.1515/9781400831050
10.1007/s10957-018-1437-8
10.1007/s10957-010-9740-z
10.1007/s10288-020-00470-x
10.1007/s10479-016-2363-5
10.1007/s11117-013-0227-7
10.1287/mnsc.13.7.492
10.1137/130939596
10.1515/9781400873173
10.1016/j.na.2016.01.002
10.1007/s11590-020-01620-0
10.1017/S0004972700026988
10.1007/s10957-013-0314-8
ContentType Journal Article
Copyright 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
2022 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
– notice: 2022 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
DOI 10.1080/02331934.2022.2038154
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1029-4945
EndPage 1775
ExternalDocumentID 10_1080_02331934_2022_2038154
2038154
Genre Research Article
GroupedDBID .7F
.DC
.QJ
0BK
0R~
123
29N
30N
4.4
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DKSSO
DU5
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c338t-6a4e645d96d4b93de3abc35507adc96a55d1a4d5afd48c8f71916b1e57f15e963
IEDL.DBID TFW
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000755466600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0233-1934
IngestDate Mon Nov 10 03:06:07 EST 2025
Tue Nov 18 21:24:04 EST 2025
Sat Nov 29 06:01:42 EST 2025
Mon Oct 20 23:46:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-6a4e645d96d4b93de3abc35507adc96a55d1a4d5afd48c8f71916b1e57f15e963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2827375349
PQPubID 27961
PageCount 31
ParticipantIDs crossref_primary_10_1080_02331934_2022_2038154
informaworld_taylorfrancis_310_1080_02331934_2022_2038154
crossref_citationtrail_10_1080_02331934_2022_2038154
proquest_journals_2827375349
PublicationCentury 2000
PublicationDate 2023-07-03
PublicationDateYYYYMMDD 2023-07-03
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-03
  day: 03
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Optimization
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis LLC
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis LLC
References CIT0030
CIT0010
CIT0032
CIT0031
CIT0011
CIT0033
Clarke FH. (CIT0024) 1983
CIT0014
CIT0013
CIT0016
CIT0015
Li XB (CIT0012) 2019; 15
CIT0018
CIT0017
CIT0019
CIT0021
CIT0020
CIT0001
CIT0023
CIT0022
CIT0003
CIT0025
CIT0002
CIT0005
CIT0027
CIT0004
CIT0026
CIT0007
CIT0029
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0019
  doi: 10.4134/BKMS.2014.51.1.287
– ident: CIT0032
  doi: 10.1007/3-540-31246-3
– ident: CIT0006
  doi: 10.1186/s13660-019-1997-7
– ident: CIT0031
  doi: 10.1007/3-540-31247-1
– ident: CIT0011
  doi: 10.1007/s10957-011-9896-1
– ident: CIT0010
  doi: 10.1007/s10957-014-0633-4
– ident: CIT0008
  doi: 10.1287/moor.23.4.769
– ident: CIT0021
  doi: 10.1080/02331934.2019.1632250
– ident: CIT0001
  doi: 10.1080/01630563.2014.884584
– ident: CIT0033
  doi: 10.1007/978-3-319-92775-6
– ident: CIT0017
  doi: 10.1007/s10479-014-1552-3
– ident: CIT0002
  doi: 10.1016/j.ejor.2012.09.006
– ident: CIT0018
  doi: 10.1007/s10957-019-01607-7
– volume: 15
  start-page: 1133
  year: 2019
  ident: CIT0012
  publication-title: J Ind Manag Optim
  doi: 10.3934/jimo.2018089
– ident: CIT0015
  doi: 10.1137/080734510
– ident: CIT0028
  doi: 10.1007/s10957-021-01829-8
– ident: CIT0003
  doi: 10.1007/s10107-013-0668-6
– ident: CIT0023
  doi: 10.1137/19M1251461
– ident: CIT0007
  doi: 10.1080/02331934.2021.2002328
– ident: CIT0014
  doi: 10.1515/9781400831050
– ident: CIT0025
  doi: 10.1007/s10957-018-1437-8
– ident: CIT0027
  doi: 10.1007/s10957-010-9740-z
– ident: CIT0030
  doi: 10.1007/s10288-020-00470-x
– ident: CIT0005
  doi: 10.1007/s10479-016-2363-5
– ident: CIT0020
  doi: 10.1007/s11117-013-0227-7
– ident: CIT0026
  doi: 10.1287/mnsc.13.7.492
– ident: CIT0004
  doi: 10.1137/130939596
– volume-title: Optimization and nonsmooth analysis
  year: 1983
  ident: CIT0024
– ident: CIT0013
  doi: 10.1515/9781400873173
– ident: CIT0022
  doi: 10.1016/j.na.2016.01.002
– ident: CIT0029
  doi: 10.1007/s11590-020-01620-0
– ident: CIT0009
  doi: 10.1017/S0004972700026988
– ident: CIT0016
  doi: 10.1007/s10957-013-0314-8
SSID ssj0021624
Score 2.391022
Snippet In this article, some Karush-Kuhn-Tucker type robust optimality conditions and duality for an uncertain nonsmooth multiobjective fractional semi-infinite...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1745
SubjectTerms Convexity
Karush-Kuhn-Tucker type robust optimality conditions
Mordukhovich's subdifferentials
Multiple objective analysis
Nonsmooth multiobjective fractional semi-infinite programming problem with uncertain data
Optimization
robust (weakly) efficient solutions
Robustness
Title Robust optimality conditions and duality for nonsmooth multiobjective fractional semi-infinite programming problems with uncertain data
URI https://www.tandfonline.com/doi/abs/10.1080/02331934.2022.2038154
https://www.proquest.com/docview/2827375349
Volume 72
WOSCitedRecordID wos000755466600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1029-4945
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021624
  issn: 0233-1934
  databaseCode: TFW
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQADb0ShIA-sgSZxnHhEiIqpQqiIbpGfUhFpUZPyF_jbnB-pWiHUAVZLZzvn850_5_MdQtdCiyKRLI9yLgUAFDDjgic0IppJiLC8zzlxxSby4bAYj9lTYBPWgVZpMbTxiSKcr7abm4u6ZcTdQpgBw0ntjUhi31JB0MlsRlAI_XZrjgavS8gVU1fW1kpEVqR9w_NbL2vRaS136Q9f7QLQYP8fpn6A9sLpE995czlEW3p6hHZXchIeo6_nmVjUDZ6BL6ncIR0DZFae2YVhYKwWvhlmjafQWM1gtbFjJs7Em3eg2Mz9iwkYrdbVJIKPnNjjLQ6EsAoGw6GaTY3tbTCGCOv5CdjSVk_Qy-BhdP8YhWoNkQSY20SUE01JphhVRLBU6ZQLmdp0aVxJRnmWqZgTlXGjSCELkwNSpCLWWW7iTIMfOEUdmLQ-Q9j0eV9lkjrtKCoEgExNTZyY2P5YlF1E2lUqZUhlbitqvJdxm_E06Lm0ei6DnrvoZin24XN5bBJgqyZQNu4SxfiKJ2W6QbbX2ksZ3EJdAr7NUwCIhJ3_oesLtGOL3jvScNpDnWa-0JdoW342k3p-5TbAN33UA_g
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELXYJODAjtjxgWugaWwnOSJEBQJ6QEX0ZnmVimiLmpRf4LcZ20nVCqEe4JpobGc8nvGbzILQhTQya6o8jVKhJAAUEONMNFlETK7AwoqGEMQ3m0jb7azbzadzYVxYpcPQNhSK8LraHW7njK5D4q7AzoDkJM4l0nTJVGB1KFlEyxRsrauf32m9TkBXzHxjW0cSOZo6i-e3YWbs00z10h_a2pug1uZ_LH4LbVQXUHwdJGYbLZjBDlqfKku4i76eh3JclHgI6qTv7-kYULMOwV0YZsZ6HB7DsvEAHvaHsOHYBycO5VvQodiOQtIEzFaYfi-Cr-y5Gy6uYsL6MBmuGtoU2DmEMRjZEKKAXeTqHnpp3XZu7qKqYUOkAOmWERPEMEJ1zjSReaJNIqRKXMU0oVXOBKU6FkRTYTXJVGZTAItMxoamNqYGVME-WoJFmwOEbUM0NFXMc0czKQFnGmbjpo3dv0V1iEi9TVxV1cxdU413HtdFTys-c8dnXvH5EF1OyD5COY95BPm0DPDS-1FsaHrCkzm0J7XA8EozFBwgbpoARiT50R-GPkerd52nR_543344RmvwKvExxMkJWipHY3OKVtRn2StGZ_40fAPrdwgi
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELWgIAQHdkRZfeAaaBrHSY4IqECgCiEQ3CyvUhGlqEn5BX6b8ZKqFUI9wDXR2M54POPnPM8gdCK0yNuyyKKMSwEABcw4520aEV1IiLC8xTlxxSaybjd_eSnuA5uwDLRKi6GNTxThfLVd3B_K1Iy4MwgzYDiJPRFp27tUEHRSMo8WYOtMrZE_dp7HmCumrq6tFYmsTH2J57dmpsLTVPLSH87aRaDO2j-MfR2thu0nPvf2soHm9PsmWplISriFvh4GYlRWeADOpO926Rgws_LULgwdYzXyj2HU-B0e9gcw3dhREwfi1XtQbIb-ygT0Vup-L4KP7Nn9LQ6MsD50hkM5mxLb42AMIdYTFLDlrW6jp87V48V1FMo1RBJwbhVRTjQlqSqoIqJIlE64kInNl8aVLChPUxVzolJuFMllbjKAilTEOs1MnGpwBDuoAYPWuwibFm-pVFKnHUWFAJSpqYnbJrZ_FmUTkXqWmAy5zG1JjTcW1ylPg56Z1TMLem6i07HYh0_mMUugmDQBVrlTFONLnrBkhuxBbS8s-IWSAcDNEkCIpNj7Q9PHaOn-ssPubrq3-2gZ3iSOQJwcoEY1HOlDtCg_q145PHJr4RvJZAbU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+optimality+conditions+and+duality+for+nonsmooth+multiobjective+fractional+semi-infinite+programming+problems+with+uncertain+data&rft.jtitle=Optimization&rft.au=Thu+Thuy%2C+Nguyen+Thi&rft.au=Van+Su%2C+Tran&rft.date=2023-07-03&rft.issn=0233-1934&rft.eissn=1029-4945&rft.volume=72&rft.issue=7&rft.spage=1745&rft.epage=1775&rft_id=info:doi/10.1080%2F02331934.2022.2038154&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_02331934_2022_2038154
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-1934&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-1934&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-1934&client=summon