A Unified Algorithm for Penalized Convolution Smoothed Quantile Regression
Penalized quantile regression (QR) is widely used for studying the relationship between a response variable and a set of predictors under data heterogeneity in high-dimensional settings. Compared to penalized least squares, scalable algorithms for fitting penalized QR are lacking due to the non-diff...
Saved in:
| Published in: | Journal of computational and graphical statistics Vol. 33; no. 2; pp. 625 - 637 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Alexandria
Taylor & Francis
02.04.2024
Taylor & Francis Ltd |
| Subjects: | |
| ISSN: | 1061-8600, 1537-2715 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Penalized quantile regression (QR) is widely used for studying the relationship between a response variable and a set of predictors under data heterogeneity in high-dimensional settings. Compared to penalized least squares, scalable algorithms for fitting penalized QR are lacking due to the non-differentiable piecewise linear loss function. To overcome the lack of smoothness, a recently proposed convolution-type smoothed method brings an interesting tradeoff between statistical accuracy and computational efficiency for both standard and penalized quantile regressions. In this article, we propose a unified algorithm for fitting penalized convolution smoothed quantile regression with various commonly used convex penalties, accompanied by an R-language package
conquer
available from the Comprehensive R Archive Network. We perform extensive numerical studies to demonstrate the superior performance of the proposed algorithm over existing methods in both statistical and computational aspects. We further exemplify the proposed algorithm by fitting a fused lasso additive QR model on the world happiness data. |
|---|---|
| AbstractList | Penalized quantile regression (QR) is widely used for studying the relationship between a response variable and a set of predictors under data heterogeneity in high-dimensional settings. Compared to penalized least squares, scalable algorithms for fitting penalized QR are lacking due to the non-differentiable piecewise linear loss function. To overcome the lack of smoothness, a recently proposed convolution-type smoothed method brings an interesting tradeoff between statistical accuracy and computational efficiency for both standard and penalized quantile regressions. In this article, we propose a unified algorithm for fitting penalized convolution smoothed quantile regression with various commonly used convex penalties, accompanied by an R-language package conquer available from the Comprehensive R Archive Network. We perform extensive numerical studies to demonstrate the superior performance of the proposed algorithm over existing methods in both statistical and computational aspects. We further exemplify the proposed algorithm by fitting a fused lasso additive QR model on the world happiness data. Penalized quantile regression (QR) is widely used for studying the relationship between a response variable and a set of predictors under data heterogeneity in high-dimensional settings. Compared to penalized least squares, scalable algorithms for fitting penalized QR are lacking due to the non-differentiable piecewise linear loss function. To overcome the lack of smoothness, a recently proposed convolution-type smoothed method brings an interesting tradeoff between statistical accuracy and computational efficiency for both standard and penalized quantile regressions. In this article, we propose a unified algorithm for fitting penalized convolution smoothed quantile regression with various commonly used convex penalties, accompanied by an R-language package conquer available from the Comprehensive R Archive Network. We perform extensive numerical studies to demonstrate the superior performance of the proposed algorithm over existing methods in both statistical and computational aspects. We further exemplify the proposed algorithm by fitting a fused lasso additive QR model on the world happiness data. |
| Author | Tan, Kean Ming Pan, Xiaoou Man, Rebeka Zhou, Wen-Xin |
| Author_xml | – sequence: 1 givenname: Rebeka surname: Man fullname: Man, Rebeka organization: Department of Statistics, University of Michigan – sequence: 2 givenname: Xiaoou surname: Pan fullname: Pan, Xiaoou organization: Department of Mathematics, University of California – sequence: 3 givenname: Kean Ming surname: Tan fullname: Tan, Kean Ming organization: Department of Statistics, University of Michigan – sequence: 4 givenname: Wen-Xin orcidid: 0000-0002-2761-485X surname: Zhou fullname: Zhou, Wen-Xin organization: Department of Information and Decision Sciences, University of Illinois at Chicago |
| BookMark | eNqFkE1LAzEQhoMo2FZ_grDgeetkk-xu8GIpflLws-eQ7mbblG1Sk6xSf70prRcPehhmmHnfYebpo0NjjULoDMMQQwkXGHJc5gDDDDIyzLKCcc4PUA8zUqRZgdlhrKMm3YqOUd_7JQDgnBc99DBKpkY3WtXJqJ1bp8NilTTWJU_KyFZ_xf7Ymg_bdkFbk7yurA2L2HzupAm6VcmLmjvlfRyeoKNGtl6d7vMATW-u38Z36eTx9n48mqQVIWVIc85zKmlFC1rzhuGSzegszwpgvFSKNzkwqup6RqTCuOEMyqKSivGazHDBqCQDdL7bu3b2vVM-iKXtXLzWCwI5pUAgxgBd7lSVs9471YhKB7l9IjipW4FBbOGJH3hiC0_s4UU3--VeO72SbvOv72rn0yZCXMlP69paBLlprWucNJWOR_694hv5sYcz |
| CitedBy_id | crossref_primary_10_1002_sim_10056 crossref_primary_10_1080_01621459_2024_2448860 crossref_primary_10_1002_sta4_70055 crossref_primary_10_3934_jimo_2025138 crossref_primary_10_1002_sta4_542 crossref_primary_10_1080_03610926_2024_2430739 crossref_primary_10_1002_bimj_202200060 crossref_primary_10_1016_j_jeconom_2023_105572 crossref_primary_10_1111_sjos_12683 |
| Cites_doi | 10.1080/00949655.2021.1927034 10.1080/01621459.2012.656014 10.1201/9781315120256 10.2307/1913643 10.1016/j.csda.2010.10.018 10.1214/16-AOS1471 10.1214/ss/1030037960 10.1137/080716542 10.1080/10618600.2015.1073155 10.1214/21-EJS1862 10.1111/j.1467-9868.2005.00490.x 10.1111/j.1467-9868.2005.00532.x 10.1080/10618600.2014.913516 10.1198/016214501753382273 10.1080/10618600.2019.1592758 10.1017/CBO9780511754098 10.18637/jss.v033.i01 10.2307/2999619 10.1080/00401706.2017.1345703 10.1214/17-AOS1568 10.1111/j.1467-9868.2005.00503.x 10.1017/9781108627771 10.1214/10-AOS827 10.1007/s10255-005-0231-1 10.1080/10618600.2016.1256816 10.1214/09-AOS729 10.1198/0003130042836 10.1093/biomet/92.1.149 10.1198/106186008X289155 10.1002/sim.7859 10.1596/978-0-8213-8985-0 10.1080/10618600.2017.1328366 10.1214/11-AOS878 10.1016/j.jeconom.2021.07.010 10.2307/1390605 10.1201/b18401 10.1080/07350015.2019.1660177 10.1111/rssb.12485 10.1111/j.2517-6161.1996.tb02080.x 10.1214/15-AOS1340 10.1080/10618600.2012.681250 10.1214/19-AOS1833 |
| ContentType | Journal Article |
| Copyright | 2023 American Statistical Association and Institute of Mathematical Statistics 2023 2023 American Statistical Association and Institute of Mathematical Statistics |
| Copyright_xml | – notice: 2023 American Statistical Association and Institute of Mathematical Statistics 2023 – notice: 2023 American Statistical Association and Institute of Mathematical Statistics |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1080/10618600.2023.2275999 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Mathematics |
| EISSN | 1537-2715 |
| EndPage | 637 |
| ExternalDocumentID | 10_1080_10618600_2023_2275999 2275999 |
| Genre | Research Article |
| GrantInformation_xml | – fundername: National Science Foundation grantid: DMS-2113409 – fundername: National Science Foundation grantid: DMS-2238428 – fundername: National Science Foundation grantid: DMS-2113356 |
| GroupedDBID | -~X .4S .7F .DC .QJ 0BK 0R~ 30N 4.4 5GY AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABTAI ABXUL ABXYU ABYWD ACGFO ACGFS ACIWK ACMTB ACTIO ACTMH ADCVX ADGTB AEGXH AELLO AENEX AEOZL AEPSL AEYOC AFRVT AFVYC AGDLA AGMYJ AHDZW AIAGR AIJEM AKBRZ AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMVHM AQRUH AQTUD ARCSS AVBZW AWYRJ BLEHA CCCUG CS3 D0L DGEBU DKSSO DU5 EBS E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P JAA KYCEM LJTGL M4Z MS~ NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ RWL RXW S-T SNACF TAE TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TUS UT5 UU3 WZA XWC ZGOLN ~S~ AAYXX CITATION JQ2 |
| ID | FETCH-LOGICAL-c338t-69964a4c474d9f5185b4b6270598ee9f6054eddb3ae11f95087cae59d3b1754a3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001131156300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1061-8600 |
| IngestDate | Wed Aug 13 04:55:11 EDT 2025 Sat Nov 29 03:24:19 EST 2025 Tue Nov 18 22:02:54 EST 2025 Mon Oct 20 23:49:33 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c338t-69964a4c474d9f5185b4b6270598ee9f6054eddb3ae11f95087cae59d3b1754a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2761-485X |
| PQID | 3064403040 |
| PQPubID | 29738 |
| PageCount | 13 |
| ParticipantIDs | informaworld_taylorfrancis_310_1080_10618600_2023_2275999 proquest_journals_3064403040 crossref_citationtrail_10_1080_10618600_2023_2275999 crossref_primary_10_1080_10618600_2023_2275999 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-02 |
| PublicationDateYYYYMMDD | 2024-04-02 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | Alexandria |
| PublicationPlace_xml | – name: Alexandria |
| PublicationTitle | Journal of computational and graphical statistics |
| PublicationYear | 2024 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | e_1_3_5_29_1 e_1_3_5_27_1 e_1_3_5_25_1 e_1_3_5_23_1 e_1_3_5_44_1 e_1_3_5_46_1 e_1_3_5_48_1 e_1_3_5_3_1 Bühlmann P. (e_1_3_5_5_1) 2011 e_1_3_5_40_1 e_1_3_5_42_1 e_1_3_5_9_1 e_1_3_5_21_1 United Nations Development Programme (e_1_3_5_41_1) 2012 e_1_3_5_7_1 e_1_3_5_18_1 e_1_3_5_39_1 e_1_3_5_37_1 e_1_3_5_14_1 e_1_3_5_35_1 e_1_3_5_12_1 e_1_3_5_33_1 Helliwell J. (e_1_3_5_16_1) 2013 e_1_3_5_50_1 e_1_3_5_10_1 e_1_3_5_31_1 e_1_3_5_28_1 e_1_3_5_26_1 e_1_3_5_24_1 e_1_3_5_22_1 e_1_3_5_45_1 e_1_3_5_47_1 e_1_3_5_49_1 e_1_3_5_2_1 e_1_3_5_43_1 e_1_3_5_8_1 e_1_3_5_20_1 e_1_3_5_4_1 e_1_3_5_17_1 e_1_3_5_38_1 e_1_3_5_15_1 e_1_3_5_13_1 e_1_3_5_36_1 e_1_3_5_11_1 e_1_3_5_34_1 e_1_3_5_19_1 Cantril H. (e_1_3_5_6_1) 1965 e_1_3_5_51_1 e_1_3_5_32_1 e_1_3_5_30_1 |
| References_xml | – ident: e_1_3_5_7_1 doi: 10.1080/00949655.2021.1927034 – ident: e_1_3_5_43_1 doi: 10.1080/01621459.2012.656014 – ident: e_1_3_5_23_1 doi: 10.1201/9781315120256 – ident: e_1_3_5_22_1 doi: 10.2307/1913643 – ident: e_1_3_5_29_1 doi: 10.1016/j.csda.2010.10.018 – ident: e_1_3_5_27_1 doi: 10.1214/16-AOS1471 – ident: e_1_3_5_15_1 – ident: e_1_3_5_33_1 doi: 10.1214/ss/1030037960 – ident: e_1_3_5_2_1 doi: 10.1137/080716542 – ident: e_1_3_5_32_1 doi: 10.1080/10618600.2015.1073155 – ident: e_1_3_5_28_1 doi: 10.1214/21-EJS1862 – ident: e_1_3_5_39_1 doi: 10.1111/j.1467-9868.2005.00490.x – ident: e_1_3_5_48_1 doi: 10.1111/j.1467-9868.2005.00532.x – ident: e_1_3_5_30_1 doi: 10.1080/10618600.2014.913516 – ident: e_1_3_5_8_1 doi: 10.1198/016214501753382273 – year: 2013 ident: e_1_3_5_16_1 article-title: “World Happiness Report 2013,” publication-title: Sustainable Development Solutions Network – ident: e_1_3_5_45_1 doi: 10.1080/10618600.2019.1592758 – ident: e_1_3_5_20_1 doi: 10.1017/CBO9780511754098 – ident: e_1_3_5_11_1 doi: 10.18637/jss.v033.i01 – volume-title: Human Development Indicators year: 2012 ident: e_1_3_5_41_1 – ident: e_1_3_5_18_1 doi: 10.2307/2999619 – ident: e_1_3_5_12_1 doi: 10.1080/00401706.2017.1345703 – ident: e_1_3_5_9_1 doi: 10.1214/17-AOS1568 – ident: e_1_3_5_51_1 doi: 10.1111/j.1467-9868.2005.00503.x – ident: e_1_3_5_42_1 doi: 10.1017/9781108627771 – ident: e_1_3_5_3_1 doi: 10.1214/10-AOS827 – ident: e_1_3_5_19_1 – ident: e_1_3_5_24_1 doi: 10.1007/s10255-005-0231-1 – ident: e_1_3_5_46_1 doi: 10.1080/10618600.2016.1256816 – volume-title: The Pattern of Human Concerns year: 1965 ident: e_1_3_5_6_1 – ident: e_1_3_5_21_1 – ident: e_1_3_5_49_1 doi: 10.1214/09-AOS729 – ident: e_1_3_5_17_1 doi: 10.1198/0003130042836 – ident: e_1_3_5_4_1 doi: 10.1093/biomet/92.1.149 – ident: e_1_3_5_35_1 – ident: e_1_3_5_26_1 doi: 10.1198/106186008X289155 – ident: e_1_3_5_31_1 doi: 10.1002/sim.7859 – ident: e_1_3_5_44_1 doi: 10.1596/978-0-8213-8985-0 – ident: e_1_3_5_47_1 doi: 10.1080/10618600.2017.1328366 – ident: e_1_3_5_40_1 doi: 10.1214/11-AOS878 – ident: e_1_3_5_14_1 doi: 10.1016/j.jeconom.2021.07.010 – ident: e_1_3_5_25_1 doi: 10.2307/1390605 – ident: e_1_3_5_13_1 doi: 10.1201/b18401 – ident: e_1_3_5_10_1 doi: 10.1080/07350015.2019.1660177 – ident: e_1_3_5_37_1 doi: 10.1111/rssb.12485 – ident: e_1_3_5_38_1 doi: 10.1111/j.2517-6161.1996.tb02080.x – volume-title: Theory and Applications year: 2011 ident: e_1_3_5_5_1 – ident: e_1_3_5_50_1 doi: 10.1214/15-AOS1340 – ident: e_1_3_5_36_1 doi: 10.1080/10618600.2012.681250 – ident: e_1_3_5_34_1 doi: 10.1214/19-AOS1833 |
| SSID | ssj0001697 |
| Score | 2.4332101 |
| Snippet | Penalized quantile regression (QR) is widely used for studying the relationship between a response variable and a set of predictors under data heterogeneity in... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 625 |
| SubjectTerms | Algorithms Convolution Convolution smoothing Heterogeneity Lasso Majorize-minimization algorithm Penalized optimization Quantile estimation regression Quantiles Regression Smoothness Statistical analysis Statistical methods |
| Title | A Unified Algorithm for Penalized Convolution Smoothed Quantile Regression |
| URI | https://www.tandfonline.com/doi/abs/10.1080/10618600.2023.2275999 https://www.proquest.com/docview/3064403040 |
| Volume | 33 |
| WOSCitedRecordID | wos001131156300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis customDbUrl: eissn: 1537-2715 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001697 issn: 1061-8600 databaseCode: TFW dateStart: 19920301 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yPMyDP6bidEoOXjObNl3b4xgOERxTJ-5WkiaZwtbK1u3gX-9Lmw6HyA56bOGF8JK873vty_cQuoYsQyivwwjTXBLmKU5CzQKiKaCFAvwUVBbNJoLBIByPo6GtJlzYskqTQ-tSKKKI1eZwc7GoKuJuTBYTAlC3TevvtusGPrAciMIA_eZojvqv61hMbXsVsCDGpLrD89soG-i0oV36I1YXANQ_-IepH6J9yz5xt9wuR2hHpQ2097CWbl00UN3Qz1K9-RjddzGQUg00FXenk2z-nr_NMMwWD5Uh8J_wvpelK7t98fMsMxe6JH5cwoJBvMFPalIW2qYn6KV_O-rdEdt9gSSQtuakA5kQ4yxhAZOR9gHXBRMdNwA-FioVaciDmJJSeFxRqk0z2SDhyo-kJ4CSMO6dolqapeoMYek4gnLONaAlc7gjFPe4BKbkc9-oVTYRq7weJ1aa3HTImMbUKphWfouN32LrtyZqr80-Sm2ObQbR9yWN8-KjiC47mMTeFttWtf6xPeZgAoSOmZ_Lzvkfhr5AdXgs64HcFqrl86W6RLvJClZ7flVs6C-l5O8Q |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8JAEJ4omogHH6gRRd2D12IfW9oeCZGgAvGBkVuz7e6iCbQGCwd_vbN9EIgxHvTaZjab3dn5vmlnvwG4xCwjEFaDalQyrlFLMM2V1NGkgWghED8Dg6fNJpx-3x0OveW7MKqsUuXQMhOKSGO1OtzqY3RREnel0hgXkbquen_XTdOxkeasw4aNWKv08wftl0U0NvIGK2iiKZviFs9Pw6zg04p66bdonUJQe_c_Jr8HOzkBJc3MY_ZhTUQV2O4t1Fs_KlBWDDQTcD6A2yZBXiqRqZLmeBRP35LXCcHpknuhOPwnPm_F0Tz3YPI0idWdLk4eZrhnGHLIoxhltbbRITy3rwetjpY3YNBCzFwTrYHJEGU0pA7lnrQR2gMaNEwHKZkrhCcxFaKC88BiwjCk6ifrhEzYHrcCZCWUWUdQiuJIHAPhuh4YjDGJgEl1pgeCWYwjWbKZrQQrq0CLZffDXJ1cNckY-0YuYlqsm6_Wzc_XrQr1hdl7Js_xm4G3vKd-kn4XkVkTE9_6xbZWOICfn3Q0QU5H1f9l_eQPQ1_AVmfQ6_rdm_7dKZTxVVYeZNaglExn4gw2wznu_PQ89e4v3Q_zOg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLZgIDQOPAaIwYAcuHa0a7q2x2lQ8ZwGDMGtSptkIG3dtNeBX4_TphMTQjvAtZWjyHbsz63zGeAcq4xI2HVqUMm4QW3BDE9S15AWZguB-TOyeDpswm21vLc3v627Cce6rVLV0DIjikhjtTrcQy7zjrgLVcV4mKiravR3tVZzHUQ5q7CG0LmunLwTvM6DsaXnq6CIoWTySzy_LbOQnhbIS38E6zQDBdv_sPcd2NLwkzQyf9mFFZGUYPNhzt06LkFR4c-MvnkPbhsEUalEnEoave5g9DF57xPcLWkLheA_8XlzkMy0_5Ln_kDd6OLkcYoWw4BDnkQ367RN9uEluOo0rw09fsGIsW6dGHUshSijMXUp96WDiT2iUb3mIiDzhPAlFkJUcB7ZTFiWVNNk3ZgJx-d2hJiEMvsACskgEYdAuGlGFmNMYrqkJjMjwWzGESo5zFF0lWWgudbDWHOTqxEZvdDSFKa53kKlt1DrrQzVudgwI-dYJuB_N2k4Sb-KyGyESWgvka3k9g_1OUcRRHRU_V02j_6w9BlstC-D8P6mdXcMRXyT9QbVKlCYjKbiBNbjGRp-dJr69hf9cfHs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Unified+Algorithm+for+Penalized+Convolution+Smoothed+Quantile+Regression&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=Man%2C+Rebeka&rft.au=Pan%2C+Xiaoou&rft.au=Tan%2C+Kean+Ming&rft.au=Zhou%2C+Wen-Xin&rft.date=2024-04-02&rft.pub=Taylor+%26+Francis&rft.issn=1061-8600&rft.eissn=1537-2715&rft.volume=33&rft.issue=2&rft.spage=625&rft.epage=637&rft_id=info:doi/10.1080%2F10618600.2023.2275999&rft.externalDocID=2275999 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon |