A Unified Algorithm for Penalized Convolution Smoothed Quantile Regression

Penalized quantile regression (QR) is widely used for studying the relationship between a response variable and a set of predictors under data heterogeneity in high-dimensional settings. Compared to penalized least squares, scalable algorithms for fitting penalized QR are lacking due to the non-diff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and graphical statistics Jg. 33; H. 2; S. 625 - 637
Hauptverfasser: Man, Rebeka, Pan, Xiaoou, Tan, Kean Ming, Zhou, Wen-Xin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Alexandria Taylor & Francis 02.04.2024
Taylor & Francis Ltd
Schlagworte:
ISSN:1061-8600, 1537-2715
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Penalized quantile regression (QR) is widely used for studying the relationship between a response variable and a set of predictors under data heterogeneity in high-dimensional settings. Compared to penalized least squares, scalable algorithms for fitting penalized QR are lacking due to the non-differentiable piecewise linear loss function. To overcome the lack of smoothness, a recently proposed convolution-type smoothed method brings an interesting tradeoff between statistical accuracy and computational efficiency for both standard and penalized quantile regressions. In this article, we propose a unified algorithm for fitting penalized convolution smoothed quantile regression with various commonly used convex penalties, accompanied by an R-language package conquer available from the Comprehensive R Archive Network. We perform extensive numerical studies to demonstrate the superior performance of the proposed algorithm over existing methods in both statistical and computational aspects. We further exemplify the proposed algorithm by fitting a fused lasso additive QR model on the world happiness data.
AbstractList Penalized quantile regression (QR) is widely used for studying the relationship between a response variable and a set of predictors under data heterogeneity in high-dimensional settings. Compared to penalized least squares, scalable algorithms for fitting penalized QR are lacking due to the non-differentiable piecewise linear loss function. To overcome the lack of smoothness, a recently proposed convolution-type smoothed method brings an interesting tradeoff between statistical accuracy and computational efficiency for both standard and penalized quantile regressions. In this article, we propose a unified algorithm for fitting penalized convolution smoothed quantile regression with various commonly used convex penalties, accompanied by an R-language package conquer available from the Comprehensive R Archive Network. We perform extensive numerical studies to demonstrate the superior performance of the proposed algorithm over existing methods in both statistical and computational aspects. We further exemplify the proposed algorithm by fitting a fused lasso additive QR model on the world happiness data.
Penalized quantile regression (QR) is widely used for studying the relationship between a response variable and a set of predictors under data heterogeneity in high-dimensional settings. Compared to penalized least squares, scalable algorithms for fitting penalized QR are lacking due to the non-differentiable piecewise linear loss function. To overcome the lack of smoothness, a recently proposed convolution-type smoothed method brings an interesting tradeoff between statistical accuracy and computational efficiency for both standard and penalized quantile regressions. In this article, we propose a unified algorithm for fitting penalized convolution smoothed quantile regression with various commonly used convex penalties, accompanied by an R-language package conquer available from the Comprehensive R Archive Network. We perform extensive numerical studies to demonstrate the superior performance of the proposed algorithm over existing methods in both statistical and computational aspects. We further exemplify the proposed algorithm by fitting a fused lasso additive QR model on the world happiness data.
Author Tan, Kean Ming
Pan, Xiaoou
Man, Rebeka
Zhou, Wen-Xin
Author_xml – sequence: 1
  givenname: Rebeka
  surname: Man
  fullname: Man, Rebeka
  organization: Department of Statistics, University of Michigan
– sequence: 2
  givenname: Xiaoou
  surname: Pan
  fullname: Pan, Xiaoou
  organization: Department of Mathematics, University of California
– sequence: 3
  givenname: Kean Ming
  surname: Tan
  fullname: Tan, Kean Ming
  organization: Department of Statistics, University of Michigan
– sequence: 4
  givenname: Wen-Xin
  orcidid: 0000-0002-2761-485X
  surname: Zhou
  fullname: Zhou, Wen-Xin
  organization: Department of Information and Decision Sciences, University of Illinois at Chicago
BookMark eNqFkE1LAzEQhoMo2FZ_grDgeetkk-xu8GIpflLws-eQ7mbblG1Sk6xSf70prRcPehhmmHnfYebpo0NjjULoDMMQQwkXGHJc5gDDDDIyzLKCcc4PUA8zUqRZgdlhrKMm3YqOUd_7JQDgnBc99DBKpkY3WtXJqJ1bp8NilTTWJU_KyFZ_xf7Ymg_bdkFbk7yurA2L2HzupAm6VcmLmjvlfRyeoKNGtl6d7vMATW-u38Z36eTx9n48mqQVIWVIc85zKmlFC1rzhuGSzegszwpgvFSKNzkwqup6RqTCuOEMyqKSivGazHDBqCQDdL7bu3b2vVM-iKXtXLzWCwI5pUAgxgBd7lSVs9471YhKB7l9IjipW4FBbOGJH3hiC0_s4UU3--VeO72SbvOv72rn0yZCXMlP69paBLlprWucNJWOR_694hv5sYcz
CitedBy_id crossref_primary_10_1002_sim_10056
crossref_primary_10_1080_01621459_2024_2448860
crossref_primary_10_1002_sta4_70055
crossref_primary_10_3934_jimo_2025138
crossref_primary_10_1002_sta4_542
crossref_primary_10_1080_03610926_2024_2430739
crossref_primary_10_1002_bimj_202200060
crossref_primary_10_1016_j_jeconom_2023_105572
crossref_primary_10_1111_sjos_12683
Cites_doi 10.1080/00949655.2021.1927034
10.1080/01621459.2012.656014
10.1201/9781315120256
10.2307/1913643
10.1016/j.csda.2010.10.018
10.1214/16-AOS1471
10.1214/ss/1030037960
10.1137/080716542
10.1080/10618600.2015.1073155
10.1214/21-EJS1862
10.1111/j.1467-9868.2005.00490.x
10.1111/j.1467-9868.2005.00532.x
10.1080/10618600.2014.913516
10.1198/016214501753382273
10.1080/10618600.2019.1592758
10.1017/CBO9780511754098
10.18637/jss.v033.i01
10.2307/2999619
10.1080/00401706.2017.1345703
10.1214/17-AOS1568
10.1111/j.1467-9868.2005.00503.x
10.1017/9781108627771
10.1214/10-AOS827
10.1007/s10255-005-0231-1
10.1080/10618600.2016.1256816
10.1214/09-AOS729
10.1198/0003130042836
10.1093/biomet/92.1.149
10.1198/106186008X289155
10.1002/sim.7859
10.1596/978-0-8213-8985-0
10.1080/10618600.2017.1328366
10.1214/11-AOS878
10.1016/j.jeconom.2021.07.010
10.2307/1390605
10.1201/b18401
10.1080/07350015.2019.1660177
10.1111/rssb.12485
10.1111/j.2517-6161.1996.tb02080.x
10.1214/15-AOS1340
10.1080/10618600.2012.681250
10.1214/19-AOS1833
ContentType Journal Article
Copyright 2023 American Statistical Association and Institute of Mathematical Statistics 2023
2023 American Statistical Association and Institute of Mathematical Statistics
Copyright_xml – notice: 2023 American Statistical Association and Institute of Mathematical Statistics 2023
– notice: 2023 American Statistical Association and Institute of Mathematical Statistics
DBID AAYXX
CITATION
JQ2
DOI 10.1080/10618600.2023.2275999
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1537-2715
EndPage 637
ExternalDocumentID 10_1080_10618600_2023_2275999
2275999
Genre Research Article
GrantInformation_xml – fundername: National Science Foundation
  grantid: DMS-2113409
– fundername: National Science Foundation
  grantid: DMS-2238428
– fundername: National Science Foundation
  grantid: DMS-2113356
GroupedDBID -~X
.4S
.7F
.DC
.QJ
0BK
0R~
30N
4.4
5GY
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACIWK
ACMTB
ACTIO
ACTMH
ADCVX
ADGTB
AEGXH
AELLO
AENEX
AEOZL
AEPSL
AEYOC
AFRVT
AFVYC
AGDLA
AGMYJ
AHDZW
AIAGR
AIJEM
AKBRZ
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CS3
D0L
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
JAA
KYCEM
LJTGL
M4Z
MS~
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SNACF
TAE
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TUS
UT5
UU3
WZA
XWC
ZGOLN
~S~
AAYXX
CITATION
JQ2
ID FETCH-LOGICAL-c338t-69964a4c474d9f5185b4b6270598ee9f6054eddb3ae11f95087cae59d3b1754a3
IEDL.DBID TFW
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001131156300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1061-8600
IngestDate Wed Aug 13 04:55:11 EDT 2025
Sat Nov 29 03:24:19 EST 2025
Tue Nov 18 22:02:54 EST 2025
Mon Oct 20 23:49:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-69964a4c474d9f5185b4b6270598ee9f6054eddb3ae11f95087cae59d3b1754a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2761-485X
PQID 3064403040
PQPubID 29738
PageCount 13
ParticipantIDs informaworld_taylorfrancis_310_1080_10618600_2023_2275999
proquest_journals_3064403040
crossref_citationtrail_10_1080_10618600_2023_2275999
crossref_primary_10_1080_10618600_2023_2275999
PublicationCentury 2000
PublicationDate 2024-04-02
PublicationDateYYYYMMDD 2024-04-02
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-02
  day: 02
PublicationDecade 2020
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle Journal of computational and graphical statistics
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_5_29_1
e_1_3_5_27_1
e_1_3_5_25_1
e_1_3_5_23_1
e_1_3_5_44_1
e_1_3_5_46_1
e_1_3_5_48_1
e_1_3_5_3_1
Bühlmann P. (e_1_3_5_5_1) 2011
e_1_3_5_40_1
e_1_3_5_42_1
e_1_3_5_9_1
e_1_3_5_21_1
United Nations Development Programme (e_1_3_5_41_1) 2012
e_1_3_5_7_1
e_1_3_5_18_1
e_1_3_5_39_1
e_1_3_5_37_1
e_1_3_5_14_1
e_1_3_5_35_1
e_1_3_5_12_1
e_1_3_5_33_1
Helliwell J. (e_1_3_5_16_1) 2013
e_1_3_5_50_1
e_1_3_5_10_1
e_1_3_5_31_1
e_1_3_5_28_1
e_1_3_5_26_1
e_1_3_5_24_1
e_1_3_5_22_1
e_1_3_5_45_1
e_1_3_5_47_1
e_1_3_5_49_1
e_1_3_5_2_1
e_1_3_5_43_1
e_1_3_5_8_1
e_1_3_5_20_1
e_1_3_5_4_1
e_1_3_5_17_1
e_1_3_5_38_1
e_1_3_5_15_1
e_1_3_5_13_1
e_1_3_5_36_1
e_1_3_5_11_1
e_1_3_5_34_1
e_1_3_5_19_1
Cantril H. (e_1_3_5_6_1) 1965
e_1_3_5_51_1
e_1_3_5_32_1
e_1_3_5_30_1
References_xml – ident: e_1_3_5_7_1
  doi: 10.1080/00949655.2021.1927034
– ident: e_1_3_5_43_1
  doi: 10.1080/01621459.2012.656014
– ident: e_1_3_5_23_1
  doi: 10.1201/9781315120256
– ident: e_1_3_5_22_1
  doi: 10.2307/1913643
– ident: e_1_3_5_29_1
  doi: 10.1016/j.csda.2010.10.018
– ident: e_1_3_5_27_1
  doi: 10.1214/16-AOS1471
– ident: e_1_3_5_15_1
– ident: e_1_3_5_33_1
  doi: 10.1214/ss/1030037960
– ident: e_1_3_5_2_1
  doi: 10.1137/080716542
– ident: e_1_3_5_32_1
  doi: 10.1080/10618600.2015.1073155
– ident: e_1_3_5_28_1
  doi: 10.1214/21-EJS1862
– ident: e_1_3_5_39_1
  doi: 10.1111/j.1467-9868.2005.00490.x
– ident: e_1_3_5_48_1
  doi: 10.1111/j.1467-9868.2005.00532.x
– ident: e_1_3_5_30_1
  doi: 10.1080/10618600.2014.913516
– ident: e_1_3_5_8_1
  doi: 10.1198/016214501753382273
– year: 2013
  ident: e_1_3_5_16_1
  article-title: “World Happiness Report 2013,”
  publication-title: Sustainable Development Solutions Network
– ident: e_1_3_5_45_1
  doi: 10.1080/10618600.2019.1592758
– ident: e_1_3_5_20_1
  doi: 10.1017/CBO9780511754098
– ident: e_1_3_5_11_1
  doi: 10.18637/jss.v033.i01
– volume-title: Human Development Indicators
  year: 2012
  ident: e_1_3_5_41_1
– ident: e_1_3_5_18_1
  doi: 10.2307/2999619
– ident: e_1_3_5_12_1
  doi: 10.1080/00401706.2017.1345703
– ident: e_1_3_5_9_1
  doi: 10.1214/17-AOS1568
– ident: e_1_3_5_51_1
  doi: 10.1111/j.1467-9868.2005.00503.x
– ident: e_1_3_5_42_1
  doi: 10.1017/9781108627771
– ident: e_1_3_5_3_1
  doi: 10.1214/10-AOS827
– ident: e_1_3_5_19_1
– ident: e_1_3_5_24_1
  doi: 10.1007/s10255-005-0231-1
– ident: e_1_3_5_46_1
  doi: 10.1080/10618600.2016.1256816
– volume-title: The Pattern of Human Concerns
  year: 1965
  ident: e_1_3_5_6_1
– ident: e_1_3_5_21_1
– ident: e_1_3_5_49_1
  doi: 10.1214/09-AOS729
– ident: e_1_3_5_17_1
  doi: 10.1198/0003130042836
– ident: e_1_3_5_4_1
  doi: 10.1093/biomet/92.1.149
– ident: e_1_3_5_35_1
– ident: e_1_3_5_26_1
  doi: 10.1198/106186008X289155
– ident: e_1_3_5_31_1
  doi: 10.1002/sim.7859
– ident: e_1_3_5_44_1
  doi: 10.1596/978-0-8213-8985-0
– ident: e_1_3_5_47_1
  doi: 10.1080/10618600.2017.1328366
– ident: e_1_3_5_40_1
  doi: 10.1214/11-AOS878
– ident: e_1_3_5_14_1
  doi: 10.1016/j.jeconom.2021.07.010
– ident: e_1_3_5_25_1
  doi: 10.2307/1390605
– ident: e_1_3_5_13_1
  doi: 10.1201/b18401
– ident: e_1_3_5_10_1
  doi: 10.1080/07350015.2019.1660177
– ident: e_1_3_5_37_1
  doi: 10.1111/rssb.12485
– ident: e_1_3_5_38_1
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume-title: Theory and Applications
  year: 2011
  ident: e_1_3_5_5_1
– ident: e_1_3_5_50_1
  doi: 10.1214/15-AOS1340
– ident: e_1_3_5_36_1
  doi: 10.1080/10618600.2012.681250
– ident: e_1_3_5_34_1
  doi: 10.1214/19-AOS1833
SSID ssj0001697
Score 2.433292
Snippet Penalized quantile regression (QR) is widely used for studying the relationship between a response variable and a set of predictors under data heterogeneity in...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 625
SubjectTerms Algorithms
Convolution
Convolution smoothing
Heterogeneity
Lasso
Majorize-minimization algorithm
Penalized optimization
Quantile estimation regression
Quantiles
Regression
Smoothness
Statistical analysis
Statistical methods
Title A Unified Algorithm for Penalized Convolution Smoothed Quantile Regression
URI https://www.tandfonline.com/doi/abs/10.1080/10618600.2023.2275999
https://www.proquest.com/docview/3064403040
Volume 33
WOSCitedRecordID wos001131156300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1537-2715
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001697
  issn: 1061-8600
  databaseCode: TFW
  dateStart: 19920301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA8yfJgPfkzF6ZQ8-NrZjzRpH8dwiOCYOnFvJUmTKWydbN0e_Ou9tOlwiOxBH1u4EO5yd79rL_dD6JoTwWUUuo5k3IUChYLPceI7grtUM9Mx5umCbIL1-9FoFA9sN-HCtlWaGlqXgyKKWG2cm4tF1RF3Y6qYCBJ121B_t32fhYByIApD6jeuOey9rmOxZ-lVQMIxItUdnt9W2chOG7NLf8TqIgH1Dv5h64do36JP3CmPyxHaUVkD7T2sR7cuGqhu4Gc5vfkY3XcwgFINMBV3JuPZ_D1_m2LYLR4oA-A_4X13lq3s8cXP05m50JXixyUYDOINflLjstE2O0Evvdth986x7AuOhLI1dyhUQoQTSRhJYx1CXhdEUJ8BHouUijXUQUSlqQi48jxtyGSZ5CqM00AAJCE8OEW1bJapM4R9SSmHJBhEkhMWKMHDyKVRqKSIqeexJiKV1hNpR5MbhoxJ4tkJppXeEqO3xOqtidprsY9yNsc2gfi7SZO8-CiiSwaTJNgi26rsn1g3BxEAdMT8XHbP_7D0BarDY9kP5LdQLZ8v1SXalSuw9vyqONBfb5rucg
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8JAEJ4omogHH6gRRd2D12If2257JESCCsQHRm7NdrtFEygGCwd_vbN9EIgxHvTazWw2s7Mz32xnvwG45DTgwrV1TTCuY4Li4Jnj1NQCrjsRUxVjRpQ2m2C9njsYeMtvYVRZpcqho4woIvXV6nCry-iiJO5KpTEuRuq66v1dN01mI8xZhw0bY63iz--3Xhbe2MgbrKCIpmSKVzw_TbMSn1bYS7956zQEtXb_Y_F7sJMDUNLILGYf1mRcge3ugr31owJlhUAzAucDuG0QxKURIlXSGA0n07fkdUxwueReKgz_id-bk3ieWzB5Gk_Um66QPMxwz9DlkEc5zGpt40N4bl33m20tb8CgCcxcE83BZIhyKiijoRfZGNoDGjgmQ0jmSulFmApRGYaBxaVhRKqfLBNc2l5oBYhKKLeOoBRPYnkMxBSOwzEOWq7glFky4LarO64tReA5hsGqQAu1-yJnJ1dNMka-kZOYFnrzld78XG9VqC_E3jN6jt8EvOU99ZP0XiTKmpj41i-ytcIA_PykowhiOqr-L-snf5j6Arba_W7H79z07k6hjENZeZBZg1Iynckz2BRz3PnpeWrdX56s8pw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLZgIAQH3ojHgBy4dvSRJu1xGkw8p_ES3Ko0TQAJumkPDvx6nDadQAhxgGsrR5Ht2J9bxx_AgaCpkFHoOpILFwsUhmdOUN9Jhcs0Nx1jni7IJninEz08xF3bTTi0bZWmhtbloIgiVpvD3c901RF3aKqYCBN1w1B_N3yfh4hypmEGoTMzTn7bvp8EY8_yq6CIY2SqSzw_LfMlPX0ZXvotWBcZqL30D3tfhkULP0mz9JcVmFL5KixcTma3Dldh3uDPcnzzGpw1CaJSjTiVNF8ee4Pn0dMrwd2SrjII_h2ft3r5m_VfcvPaMze6MnI1RothwCHX6rHstM3X4a59fNs6cSz9giOxbh05DEshKqiknGaxDjGxpzRlPkdAFikVayyEqMqyNBDK87Rhk-VSqDDOghQxCRXBBtTyXq42gfiSMYFZMIikoDxQqQgjl0WhkmnMPI9vAa20nkg7m9xQZLwknh1hWuktMXpLrN62oDER65fDOX4TiD-bNBkVX0V0SWGSBL_I1iv7J_acowgiOmr-Lrvbf1h6H-a6R-3k4rRzvgPz-KbsDfLrUBsNxmoXZuUbGn6wV_j2B8Ai8U4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Unified+Algorithm+for+Penalized+Convolution+Smoothed+Quantile+Regression&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=Man%2C+Rebeka&rft.au=Pan%2C+Xiaoou&rft.au=Tan%2C+Kean+Ming&rft.au=Wen-Xin%2C+Zhou&rft.date=2024-04-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1061-8600&rft.eissn=1537-2715&rft.volume=33&rft.issue=2&rft.spage=625&rft.epage=637&rft_id=info:doi/10.1080%2F10618600.2023.2275999&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon