Back-propagation learning algorithm and parallel computers: The CLEPSYDRA mapping scheme

This paper deals with the parallel implementation of the back-propagation of errors learning algorithm. To obtain the partitioning of the neural network on the processor network the author describes a new mapping scheme that uses a mixture of synapse parallelism, neuron parallelism and training exam...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neurocomputing (Amsterdam) Ročník 31; číslo 1; s. 67 - 85
Hlavní autor: d'Acierno, Antonio
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.03.2000
Témata:
ISSN:0925-2312, 1872-8286
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper deals with the parallel implementation of the back-propagation of errors learning algorithm. To obtain the partitioning of the neural network on the processor network the author describes a new mapping scheme that uses a mixture of synapse parallelism, neuron parallelism and training examples parallelism (if any). The proposed mapping scheme allows to describe the back-propagation algorithm as a collection of SIMD processes, so that both SIMD and MIMD machines can be used. The main feature of the obtained parallel algorithm is the absence of point-to-point communication; in fact, for each training pattern, an all-to-one broadcasting with an associative operator (combination) and an one-to-all broadcasting (that can be both realized in log P time) are needed. A performance model is proposed and tested on a ring-connected MIMD parallel computer. Simulation results on MIMD and SIMD parallel machines are also shown and commented.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0925-2312
1872-8286
DOI:10.1016/S0925-2312(99)00151-4