A practical nonlinear dynamic framework for solving a class of fractional programming problems

In this paper, we present a high-performance dynamic optimization scheme to solve a class of fractional programming (FP) problems. The main idea is to convert the FP problem into an equivalent convex second-order cone programming problem. A neural network model based on a dynamic model is then const...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics Jg. 82; H. 3; S. 1093 - 1108
Hauptverfasser: Nazemi, Alireza, Tahmasbi, Narges
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Dordrecht Springer Netherlands 01.11.2015
Springer Nature B.V
Schlagworte:
ISSN:0924-090X, 1573-269X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present a high-performance dynamic optimization scheme to solve a class of fractional programming (FP) problems. The main idea is to convert the FP problem into an equivalent convex second-order cone programming problem. A neural network model based on a dynamic model is then constructed for solving the obtained convex programming problem. By employing a credible Lyapunov function approach, it is shown that the proposed neural network model is stable in the sense of Lyapunov and is globally convergent to an exact optimal solution of the original optimization problem. A block diagram of the model is also given. Several illustrative examples are provided to show the efficiency of the proposed method in this manuscript.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0924-090X
1573-269X
DOI:10.1007/s11071-015-2219-6