A practical nonlinear dynamic framework for solving a class of fractional programming problems

In this paper, we present a high-performance dynamic optimization scheme to solve a class of fractional programming (FP) problems. The main idea is to convert the FP problem into an equivalent convex second-order cone programming problem. A neural network model based on a dynamic model is then const...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nonlinear dynamics Ročník 82; číslo 3; s. 1093 - 1108
Hlavní autoři: Nazemi, Alireza, Tahmasbi, Narges
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.11.2015
Springer Nature B.V
Témata:
ISSN:0924-090X, 1573-269X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we present a high-performance dynamic optimization scheme to solve a class of fractional programming (FP) problems. The main idea is to convert the FP problem into an equivalent convex second-order cone programming problem. A neural network model based on a dynamic model is then constructed for solving the obtained convex programming problem. By employing a credible Lyapunov function approach, it is shown that the proposed neural network model is stable in the sense of Lyapunov and is globally convergent to an exact optimal solution of the original optimization problem. A block diagram of the model is also given. Several illustrative examples are provided to show the efficiency of the proposed method in this manuscript.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0924-090X
1573-269X
DOI:10.1007/s11071-015-2219-6