A GPU-accelerated adaptive kernel density estimation approach for efficient point pattern analysis on spatial big data

Kernel density estimation (KDE) is a classic approach for spatial point pattern analysis. In many applications, KDE with spatially adaptive bandwidths (adaptive KDE) is preferred over KDE with an invariant bandwidth (fixed KDE). However, bandwidths determination for adaptive KDE is extremely computa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of geographical information science : IJGIS Jg. 31; H. 10; S. 2068 - 2097
Hauptverfasser: Zhang, Guiming, Zhu, A-Xing, Huang, Qunying
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Abingdon Taylor & Francis 03.10.2017
Taylor & Francis LLC
Schlagworte:
ISSN:1365-8816, 1362-3087, 1365-8824
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Kernel density estimation (KDE) is a classic approach for spatial point pattern analysis. In many applications, KDE with spatially adaptive bandwidths (adaptive KDE) is preferred over KDE with an invariant bandwidth (fixed KDE). However, bandwidths determination for adaptive KDE is extremely computationally intensive, particularly for point pattern analysis tasks of large problem sizes. This computational challenge impedes the application of adaptive KDE to analyze large point data sets, which are common in this big data era. This article presents a graphics processing units (GPUs)-accelerated adaptive KDE algorithm for efficient spatial point pattern analysis on spatial big data. First, optimizations were designed to reduce the algorithmic complexity of the bandwidth determination algorithm for adaptive KDE. The massively parallel computing resources on GPU were then exploited to further speed up the optimized algorithm. Experimental results demonstrated that the proposed optimizations effectively improved the performance by a factor of tens. Compared to the sequential algorithm and an Open Multiprocessing (OpenMP)-based algorithm leveraging multiple central processing unit cores for adaptive KDE, the GPU-enabled algorithm accelerated point pattern analysis tasks by a factor of hundreds and tens, respectively. Additionally, the GPU-accelerated adaptive KDE algorithm scales reasonably well while increasing the size of data sets. Given the significant acceleration brought by the GPU-enabled adaptive KDE algorithm, point pattern analysis with the adaptive KDE approach on large point data sets can be performed efficiently. Point pattern analysis on spatial big data, computationally prohibitive with the sequential algorithm, can be conducted routinely with the GPU-accelerated algorithm. The GPU-accelerated adaptive KDE approach contributes to the geospatial computational toolbox that facilitates geographic knowledge discovery from spatial big data.
AbstractList Kernel density estimation (KDE) is a classic approach for spatial point pattern analysis. In many applications, KDE with spatially adaptive bandwidths (adaptive KDE) is preferred over KDE with an invariant bandwidth (fixed KDE). However, bandwidths determination for adaptive KDE is extremely computationally intensive, particularly for point pattern analysis tasks of large problem sizes. This computational challenge impedes the application of adaptive KDE to analyze large point data sets, which are common in this big data era. This article presents a graphics processing units (GPUs)-accelerated adaptive KDE algorithm for efficient spatial point pattern analysis on spatial big data. First, optimizations were designed to reduce the algorithmic complexity of the bandwidth determination algorithm for adaptive KDE. The massively parallel computing resources on GPU were then exploited to further speed up the optimized algorithm. Experimental results demonstrated that the proposed optimizations effectively improved the performance by a factor of tens. Compared to the sequential algorithm and an Open Multiprocessing (OpenMP)-based algorithm leveraging multiple central processing unit cores for adaptive KDE, the GPU-enabled algorithm accelerated point pattern analysis tasks by a factor of hundreds and tens, respectively. Additionally, the GPU-accelerated adaptive KDE algorithm scales reasonably well while increasing the size of data sets. Given the significant acceleration brought by the GPU-enabled adaptive KDE algorithm, point pattern analysis with the adaptive KDE approach on large point data sets can be performed efficiently. Point pattern analysis on spatial big data, computationally prohibitive with the sequential algorithm, can be conducted routinely with the GPU-accelerated algorithm. The GPU-accelerated adaptive KDE approach contributes to the geospatial computational toolbox that facilitates geographic knowledge discovery from spatial big data.
Author Huang, Qunying
Zhu, A-Xing
Zhang, Guiming
Author_xml – sequence: 1
  givenname: Guiming
  orcidid: 0000-0001-7064-2138
  surname: Zhang
  fullname: Zhang, Guiming
  organization: Department of Geography, University of Wisconsin-Madison
– sequence: 2
  givenname: A-Xing
  surname: Zhu
  fullname: Zhu, A-Xing
  email: azhu@wisc.edu
  organization: Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application
– sequence: 3
  givenname: Qunying
  orcidid: 0000-0003-3499-7294
  surname: Huang
  fullname: Huang, Qunying
  organization: Department of Geography, University of Wisconsin-Madison
BookMark eNqFkE9rFjEQh4NUsNZ-BCHgeV_zZ_dNghdL0SoU9GDPYTaZaHSbrElaeb-92b714kEvmTD8nmHmeU5OUk5IyEvOdpxp9prL_aQ13-8E42rHpRiNmp6Q094Xg2RanTz8p2ELPSPntcaZCamN1mo6JfcX9OrzzQDO4YIFGnoKHtYW75H-wJJwoR5Tje1AsbZ4Cy3mRGFdSwb3jYZcKIYQXcTU6Jrj9kJrnaSQYDnUWGkHam9GWOgcv1IPDV6QpwGWiueP9YzcvH_35fLDcP3p6uPlxfXgpNRt2CstnRqNc04EkMikFzMim2dhzNYajReMBT5pRCX2wXgvQSmjPDfoR3lGXh3n9n1_3vUL7Pd8V_pi1XIjRyb0JHlPvTmmXMm1FgzWxfZwaSsQF8uZ3VzbP67t5to-uu709Be9li6qHP7LvT1yMXWNt_Arl8XbBocll1AguVit_PeI35KamZo
CitedBy_id crossref_primary_10_3390_ijgi12010024
crossref_primary_10_4081_gh_2024_1307
crossref_primary_10_3390_ijgi11010055
crossref_primary_10_1016_j_spasta_2020_100452
crossref_primary_10_1080_00087041_2023_2246713
crossref_primary_10_3390_ijgi12020031
crossref_primary_10_1111_tgis_12730
crossref_primary_10_1016_j_jprocont_2022_07_002
crossref_primary_10_3390_ijgi9110653
crossref_primary_10_1016_j_geoderma_2019_05_024
crossref_primary_10_3390_electronics9050837
crossref_primary_10_1080_13658816_2018_1555831
crossref_primary_10_1080_00330124_2025_2460997
crossref_primary_10_1109_JIOT_2020_2989398
crossref_primary_10_1016_j_measurement_2022_112257
crossref_primary_10_1080_17445647_2020_1746418
crossref_primary_10_1016_j_jclepro_2024_142794
crossref_primary_10_1007_s12145_024_01588_w
crossref_primary_10_1080_13658816_2024_2394651
crossref_primary_10_1111_tgis_12901
crossref_primary_10_1080_13658816_2019_1615071
crossref_primary_10_1080_13658816_2022_2029454
crossref_primary_10_1109_ACCESS_2025_3525660
crossref_primary_10_7717_peerj_cs_263
crossref_primary_10_1111_tgis_12881
crossref_primary_10_1080_13658816_2020_1732393
Cites_doi 10.1016/j.compenvurbsys.2016.05.001
10.1080/13658816.2016.1170836
10.1016/0098-3004(95)00020-9
10.2307/2347366
10.1080/03610918.2010.500108
10.1080/00045601003791243
10.1080/13658816.2015.1039538
10.1145/1365490.1365500
10.2307/622936
10.1080/01621459.1996.10476720
10.1016/j.compenvurbsys.2008.05.001
10.1080/13658816.2014.918319
10.1080/13658810902950625
10.1080/17538947.2011.587547
10.1080/13658816.2012.692372
10.1137/1114019
10.1214/aos/1176345986
10.1080/00045608.2015.1081120
10.1080/13658816.2015.1089441
10.1109/12.286299
10.2307/1938423
10.1145/356789.356797
10.1038/nrg2857
10.1080/17538947.2016.1239771
10.1007/978-1-4899-3324-9
10.1080/13658816.2013.841318
10.1007/s10708-007-9111-y
10.12988/ams.2013.13133
10.1111/tgis.12213
10.1080/13658816.2013.828840
10.1080/13658816.2014.911300
10.14778/2536222.2536227
10.1016/j.compenvurbsys.2010.04.001
10.1186/1476-072X-9-39
10.1016/j.biocon.2009.05.006
10.2478/amcs-2013-0065
10.1111/j.1365-2745.2009.01510.x
10.1111/j.1467-842X.1990.tb01031.x
10.1111/tgis.12108
10.1080/00401706.1977.10489521
10.2307/1403548
10.1145/321062.321069
10.1111/tgis.2014.18.issue-s1
10.1080/13658810902984228
10.1080/13658816.2015.1058387
10.1080/13658816.2013.778413
10.1080/13658816.2014.976569
10.1371/journal.pbio.1001220
10.1073/pnas.1103051108
10.1016/j.envsoft.2013.09.015
ContentType Journal Article
Copyright 2017 Informa UK Limited, trading as Taylor & Francis Group 2017
2017 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2017 Informa UK Limited, trading as Taylor & Francis Group 2017
– notice: 2017 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/13658816.2017.1324975
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1362-3087
1365-8824
EndPage 2097
ExternalDocumentID 10_1080_13658816_2017_1324975
1324975
Genre Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 41431177
  funderid: 10.13039/501100001809
– fundername: Natural Science Research Program of Jiangsu
  grantid: 14KJA170001
– fundername: PAPD, National Key Technology Innovation Project for Water Pollution Control and Remediation
  grantid: 2013ZX07103006
– fundername: National Basic Research Program of China
  grantid: 2015CB954102
GroupedDBID -~X
..I
.4S
.7F
.DC
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAIKC
AAJMT
AALDU
AAMIU
AAMNW
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABLIJ
ABPAQ
ABPEM
ABRLO
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACHQT
ACIWK
ACTIO
ACUHS
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AFKVX
AFRAH
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CS3
DGEBU
DKSSO
DU5
EAP
EBO
EBS
EDO
EJD
EMK
EPL
ESX
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~9
H~P
I-F
IPNFZ
J.P
KYCEM
M4Z
MM-
NA5
NX~
O9-
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TH9
TNC
TQWBC
TTHFI
TUROJ
TUS
TWF
UT5
UU3
ZCA
ZGOLN
~02
~S~
AAYXX
CITATION
7SC
8FD
ADYSH
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c338t-6783c749ccc2fa3e03d2bee0bb299c2fa49d200f158ee726f9dd3a7797d19ed43
IEDL.DBID TFW
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000405678300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1365-8816
IngestDate Fri Jul 25 08:32:45 EDT 2025
Sat Nov 29 06:05:13 EST 2025
Tue Nov 18 22:28:53 EST 2025
Mon Oct 20 23:29:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-6783c749ccc2fa3e03d2bee0bb299c2fa49d200f158ee726f9dd3a7797d19ed43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3499-7294
0000-0001-7064-2138
PQID 1934028531
PQPubID 53147
PageCount 30
ParticipantIDs proquest_journals_1934028531
crossref_citationtrail_10_1080_13658816_2017_1324975
crossref_primary_10_1080_13658816_2017_1324975
informaworld_taylorfrancis_310_1080_13658816_2017_1324975
PublicationCentury 2000
PublicationDate 2017-10-03
PublicationDateYYYYMMDD 2017-10-03
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-03
  day: 03
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle International journal of geographical information science : IJGIS
PublicationYear 2017
Publisher Taylor & Francis
Taylor & Francis LLC
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis LLC
References Fotheringham A.S. (CIT0014) 2000
CIT0030
CIT0032
CIT0034
CIT0033
CIT0036
CIT0035
CIT0038
CIT0039
CIT0041
CIT0040
CIT0043
Burt J.E. (CIT0008) 2009
CIT0042
CIT0001
Kirk D.B. (CIT0024) 2012
CIT0045
CIT0044
CIT0003
CIT0047
CIT0002
CIT0046
CIT0005
CIT0049
CIT0004
CIT0048
CIT0007
CIT0006
Jones M.C. (CIT0022) 1996; 11
CIT0009
CIT0050
CIT0052
CIT0051
CIT0010
CIT0054
CIT0053
CIT0012
CIT0056
CIT0055
CIT0058
CIT0057
CIT0016
CIT0015
CIT0059
CIT0018
CIT0017
CIT0019
CIT0060
CIT0021
CIT0020
Evans M.R. (CIT0013) 2013
CIT0025
CIT0026
CIT0029
CIT0028
References_xml – ident: CIT0055
  doi: 10.1016/j.compenvurbsys.2016.05.001
– ident: CIT0056
  doi: 10.1080/13658816.2016.1170836
– ident: CIT0007
  doi: 10.1016/0098-3004(95)00020-9
– ident: CIT0010
  doi: 10.2307/2347366
– ident: CIT0029
  doi: 10.1080/03610918.2010.500108
– ident: CIT0045
  doi: 10.1080/00045601003791243
– ident: CIT0017
  doi: 10.1080/13658816.2015.1039538
– ident: CIT0030
  doi: 10.1145/1365490.1365500
– ident: CIT0015
  doi: 10.2307/622936
– ident: CIT0035
  doi: 10.1080/01621459.1996.10476720
– ident: CIT0051
  doi: 10.1016/j.compenvurbsys.2008.05.001
– ident: CIT0032
  doi: 10.1080/13658816.2014.918319
– ident: CIT0038
  doi: 10.1080/13658810902950625
– ident: CIT0053
  doi: 10.1080/17538947.2011.587547
– ident: CIT0058
  doi: 10.1080/13658816.2012.692372
– volume-title: CyberGIS: fostering a new wave of geospatial innovation and discovery
  year: 2013
  ident: CIT0013
– ident: CIT0012
  doi: 10.1137/1114019
– ident: CIT0001
  doi: 10.1214/aos/1176345986
– ident: CIT0020
  doi: 10.1080/00045608.2015.1081120
– volume-title: Programming massively parallel processors: a hands-on approach
  year: 2012
  ident: CIT0024
– ident: CIT0026
  doi: 10.1080/13658816.2015.1089441
– ident: CIT0044
  doi: 10.1109/12.286299
– ident: CIT0048
  doi: 10.2307/1938423
– ident: CIT0005
  doi: 10.1145/356789.356797
– ident: CIT0036
  doi: 10.1038/nrg2857
– ident: CIT0054
  doi: 10.1080/17538947.2016.1239771
– ident: CIT0040
  doi: 10.1007/978-1-4899-3324-9
– ident: CIT0046
  doi: 10.1080/13658816.2013.841318
– ident: CIT0016
  doi: 10.1007/s10708-007-9111-y
– ident: CIT0028
  doi: 10.12988/ams.2013.13133
– ident: CIT0059
  doi: 10.1111/tgis.12213
– ident: CIT0057
  doi: 10.1080/13658816.2013.828840
– volume-title: Elementary statistics for geographers
  year: 2009
  ident: CIT0008
– ident: CIT0034
  doi: 10.1080/13658816.2014.911300
– ident: CIT0002
  doi: 10.14778/2536222.2536227
– ident: CIT0052
  doi: 10.1016/j.compenvurbsys.2010.04.001
– ident: CIT0009
  doi: 10.1186/1476-072X-9-39
– volume: 11
  start-page: 337
  issue: 3
  year: 1996
  ident: CIT0022
  publication-title: Computational Statistics
– ident: CIT0041
  doi: 10.1016/j.biocon.2009.05.006
– ident: CIT0003
  doi: 10.2478/amcs-2013-0065
– ident: CIT0025
  doi: 10.1111/j.1365-2745.2009.01510.x
– ident: CIT0021
  doi: 10.1111/j.1467-842X.1990.tb01031.x
– ident: CIT0039
  doi: 10.1111/tgis.12108
– ident: CIT0006
  doi: 10.1080/00401706.1977.10489521
– ident: CIT0004
  doi: 10.2307/1403548
– ident: CIT0019
  doi: 10.1145/321062.321069
– ident: CIT0050
  doi: 10.1111/tgis.2014.18.issue-s1
– ident: CIT0018
  doi: 10.1080/13658810902984228
– ident: CIT0060
  doi: 10.1080/13658816.2015.1058387
– ident: CIT0042
  doi: 10.1080/13658816.2013.778413
– ident: CIT0043
  doi: 10.1080/13658816.2014.976569
– volume-title: Quantitative geography: perspectives on spatial data analysis
  year: 2000
  ident: CIT0014
– ident: CIT0047
  doi: 10.1371/journal.pbio.1001220
– ident: CIT0049
  doi: 10.1073/pnas.1103051108
– ident: CIT0033
  doi: 10.1016/j.envsoft.2013.09.015
SSID ssib023898875
ssj0001015
ssib000159086
Score 2.362259
Snippet Kernel density estimation (KDE) is a classic approach for spatial point pattern analysis. In many applications, KDE with spatially adaptive bandwidths...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2068
SubjectTerms Adaptive algorithms
Adaptive kernel density estimation
Algorithms
Bandwidths
Big Data
Computer applications
Cores
Data management
Data mining
Data processing
Datasets
Fractals
GPU/CUDA
Graphics processing units
Multiprocessing
OpenMP
optimization
Pattern analysis
Shopping centers
Spatial analysis
spatial big data
Title A GPU-accelerated adaptive kernel density estimation approach for efficient point pattern analysis on spatial big data
URI https://www.tandfonline.com/doi/abs/10.1080/13658816.2017.1324975
https://www.proquest.com/docview/1934028531
Volume 31
WOSCitedRecordID wos000405678300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1362-3087
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001015
  issn: 1365-8816
  databaseCode: TFW
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF5EBL34Fh9V9uA1NZtNu9ljEasHKR5a7S1s9qFFiaWJQv-9M8mmWkQ86CWQkE2yj5lvJnz7DSHnOlSGhUoESvAoQPWRAFIwGzhmVMwyrkSlpXd_KwaDZDyWd55NWHhaJebQrhaKqHw1GrfKioYRd4HMrCRhSDBgog3pVCwFbjMH6EfTHPYfvgQwWNN7AbiATxKs6jNAhgXZaXZm4SObPT4_vWUJvZa0Tb_58gqg-lv_0LVtsumjU9qrl9MOWbH5Lln3hdKf5nvkvUev70aB0hrgClUmDFVGTdFn0mc7y-0LNUiJL-cU5TvqfZG0ES6n0BFqK9EKwDo6fZ3gsVL4hJu8PAqFBgXyvOFDsskjRQ7rPhn1r4aXN4Ev3RBoyHnLACCQa5hmrXXkFLchN1FmbZhlAH94KZYG7NOxTmKtiLpOGgPrQkhhmLQm5gdkNX_N7SGhLGZJFstEOteNjQilycDLdp0zIlLS8SMSN1OSaq9rjuU1XlLm5U-bQU1xUFM_qEekvWg2rYU9fmsgv853WlZ_VFxd_iTlv7RtNYsj9T6iSCF0huQdwiV2_IdHn5ANPK34hbxFVsvZmz0la_q9nBSzs8oaPgBHzgJ2
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZ4SWXhjXjjgTUljtM6HhGigCgVQ4FuluMHVKBStQGJf89dHlCEUAdYMiSxE9t3991Z5-8IOTKhtizUItCCRwGyjwQQgrnAM6tjlnItci69u7bodJJeT06ehcG0SoyhfUEUkdtqVG7cjK5S4o4xNStJGGYYMFGHeCqWojFL5huAtcif323dT7gwWNX7E3IBoSTo1ZeLDCLZqM5mYZ_VKZ_fPvMNv76xm_6w5jlEtZb_Y3ArZKl0UOlJIVGrZMYN1kitrJX--L5O3k7o-c1toI0BxEKiCUu11UM0m_TJjQbumVrMis_eKTJ4FEcjacVdTmEk1OW8FQB3dPjSx2tO8gkvlQwpFBqMMdUbfiTtP1BMY90gt62z7ulFUFZvCAyEvVkAKMgNrLQxJvKau5DbKHUuTFNAQLwVSwsq6lkjcU5ETS-tBdEQUlgmnY35JpkbvAzcFqEsZkkay0R634ytCKVNwdA2vbci0tLzbRJXa6JMSW2OFTaeFSsZUKtJVTipqpzUbVL_bDYsuD2mNZCTC66yfFPFFxVQFJ_Sdq-SDlWaibEC7xnid_CY2M4fuj4ktYvudVu1LztXu2QRH-XphnyPzGWjV7dPFsxb1h-PDnLV-ACqPgag
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8MwFLa4BCzciBsPrIE4Tut4REABgaoOXJvl-ICKqlRtQOLf817icAghBlgyJHlJbL8z-vw9QvZMrC2LtYi04EmE7CMRlGAu8szqlOVci5JL7-ZStNvZ3Z3sBDThKMAqsYb2FVFE6avRuAfW14i4A0RmZRlDgAET-1BOpVI0xskkpM5NVPKr1u2nDAaber9HXAhQEszqI0MGjWzUW7PwmfUmn59e8yV8fSE3_ebMywjVmv-HsS2QuZCe0sNKnxbJmOsvkZnQKf3hdZm8HNLTznWkjYF4hTQTlmqrB-g06aMb9l2PWsTEF68U-TuqjZG0Zi6nMBDqStYKCHZ08NTFY0nxCTcFfhQKAiMEesOH5N17iiDWFXLdOrk6OotC74bIQNFbRBADuYF1NsYkXnMXc5vkzsV5DvEPT6XSgoF61sicE0nTS2tBMYQUlklnU75KJvpPfbdGKEtZlqcyk943UytiaXNws03vrUi09HydpPWSKBOIzbG_Rk-xwH9aT6rCSVVhUtfJ_rvYoGL2-E1Afl5vVZS_VHzV_0TxX2S3auVQwUmMFOTOUL1DvsQ2_vDoXTLdOW6py_P2xSaZxSsl1pBvkYli-Oy2yZR5Kbqj4U5pGG-GDAVS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+GPU-accelerated+adaptive+kernel+density+estimation+approach+for+efficient+point+pattern+analysis+on+spatial+big+data&rft.jtitle=International+journal+of+geographical+information+science+%3A+IJGIS&rft.au=Zhang%2C+Guiming&rft.au=Zhu%2C+A-Xing&rft.au=Huang%2C+Qunying&rft.date=2017-10-03&rft.issn=1365-8816&rft.eissn=1362-3087&rft.volume=31&rft.issue=10&rft.spage=2068&rft.epage=2097&rft_id=info:doi/10.1080%2F13658816.2017.1324975&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_13658816_2017_1324975
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1365-8816&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1365-8816&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1365-8816&client=summon