A GPU-accelerated adaptive kernel density estimation approach for efficient point pattern analysis on spatial big data
Kernel density estimation (KDE) is a classic approach for spatial point pattern analysis. In many applications, KDE with spatially adaptive bandwidths (adaptive KDE) is preferred over KDE with an invariant bandwidth (fixed KDE). However, bandwidths determination for adaptive KDE is extremely computa...
Gespeichert in:
| Veröffentlicht in: | International journal of geographical information science : IJGIS Jg. 31; H. 10; S. 2068 - 2097 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Abingdon
Taylor & Francis
03.10.2017
Taylor & Francis LLC |
| Schlagworte: | |
| ISSN: | 1365-8816, 1362-3087, 1365-8824 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Kernel density estimation (KDE) is a classic approach for spatial point pattern analysis. In many applications, KDE with spatially adaptive bandwidths (adaptive KDE) is preferred over KDE with an invariant bandwidth (fixed KDE). However, bandwidths determination for adaptive KDE is extremely computationally intensive, particularly for point pattern analysis tasks of large problem sizes. This computational challenge impedes the application of adaptive KDE to analyze large point data sets, which are common in this big data era. This article presents a graphics processing units (GPUs)-accelerated adaptive KDE algorithm for efficient spatial point pattern analysis on spatial big data. First, optimizations were designed to reduce the algorithmic complexity of the bandwidth determination algorithm for adaptive KDE. The massively parallel computing resources on GPU were then exploited to further speed up the optimized algorithm. Experimental results demonstrated that the proposed optimizations effectively improved the performance by a factor of tens. Compared to the sequential algorithm and an Open Multiprocessing (OpenMP)-based algorithm leveraging multiple central processing unit cores for adaptive KDE, the GPU-enabled algorithm accelerated point pattern analysis tasks by a factor of hundreds and tens, respectively. Additionally, the GPU-accelerated adaptive KDE algorithm scales reasonably well while increasing the size of data sets. Given the significant acceleration brought by the GPU-enabled adaptive KDE algorithm, point pattern analysis with the adaptive KDE approach on large point data sets can be performed efficiently. Point pattern analysis on spatial big data, computationally prohibitive with the sequential algorithm, can be conducted routinely with the GPU-accelerated algorithm. The GPU-accelerated adaptive KDE approach contributes to the geospatial computational toolbox that facilitates geographic knowledge discovery from spatial big data. |
|---|---|
| AbstractList | Kernel density estimation (KDE) is a classic approach for spatial point pattern analysis. In many applications, KDE with spatially adaptive bandwidths (adaptive KDE) is preferred over KDE with an invariant bandwidth (fixed KDE). However, bandwidths determination for adaptive KDE is extremely computationally intensive, particularly for point pattern analysis tasks of large problem sizes. This computational challenge impedes the application of adaptive KDE to analyze large point data sets, which are common in this big data era. This article presents a graphics processing units (GPUs)-accelerated adaptive KDE algorithm for efficient spatial point pattern analysis on spatial big data. First, optimizations were designed to reduce the algorithmic complexity of the bandwidth determination algorithm for adaptive KDE. The massively parallel computing resources on GPU were then exploited to further speed up the optimized algorithm. Experimental results demonstrated that the proposed optimizations effectively improved the performance by a factor of tens. Compared to the sequential algorithm and an Open Multiprocessing (OpenMP)-based algorithm leveraging multiple central processing unit cores for adaptive KDE, the GPU-enabled algorithm accelerated point pattern analysis tasks by a factor of hundreds and tens, respectively. Additionally, the GPU-accelerated adaptive KDE algorithm scales reasonably well while increasing the size of data sets. Given the significant acceleration brought by the GPU-enabled adaptive KDE algorithm, point pattern analysis with the adaptive KDE approach on large point data sets can be performed efficiently. Point pattern analysis on spatial big data, computationally prohibitive with the sequential algorithm, can be conducted routinely with the GPU-accelerated algorithm. The GPU-accelerated adaptive KDE approach contributes to the geospatial computational toolbox that facilitates geographic knowledge discovery from spatial big data. |
| Author | Huang, Qunying Zhu, A-Xing Zhang, Guiming |
| Author_xml | – sequence: 1 givenname: Guiming orcidid: 0000-0001-7064-2138 surname: Zhang fullname: Zhang, Guiming organization: Department of Geography, University of Wisconsin-Madison – sequence: 2 givenname: A-Xing surname: Zhu fullname: Zhu, A-Xing email: azhu@wisc.edu organization: Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application – sequence: 3 givenname: Qunying orcidid: 0000-0003-3499-7294 surname: Huang fullname: Huang, Qunying organization: Department of Geography, University of Wisconsin-Madison |
| BookMark | eNqFkE9rFjEQh4NUsNZ-BCHgeV_zZ_dNghdL0SoU9GDPYTaZaHSbrElaeb-92b714kEvmTD8nmHmeU5OUk5IyEvOdpxp9prL_aQ13-8E42rHpRiNmp6Q094Xg2RanTz8p2ELPSPntcaZCamN1mo6JfcX9OrzzQDO4YIFGnoKHtYW75H-wJJwoR5Tje1AsbZ4Cy3mRGFdSwb3jYZcKIYQXcTU6Jrj9kJrnaSQYDnUWGkHam9GWOgcv1IPDV6QpwGWiueP9YzcvH_35fLDcP3p6uPlxfXgpNRt2CstnRqNc04EkMikFzMim2dhzNYajReMBT5pRCX2wXgvQSmjPDfoR3lGXh3n9n1_3vUL7Pd8V_pi1XIjRyb0JHlPvTmmXMm1FgzWxfZwaSsQF8uZ3VzbP67t5to-uu709Be9li6qHP7LvT1yMXWNt_Arl8XbBocll1AguVit_PeI35KamZo |
| CitedBy_id | crossref_primary_10_3390_ijgi12010024 crossref_primary_10_4081_gh_2024_1307 crossref_primary_10_3390_ijgi11010055 crossref_primary_10_1016_j_spasta_2020_100452 crossref_primary_10_1080_00087041_2023_2246713 crossref_primary_10_3390_ijgi12020031 crossref_primary_10_1111_tgis_12730 crossref_primary_10_1016_j_jprocont_2022_07_002 crossref_primary_10_3390_ijgi9110653 crossref_primary_10_1016_j_geoderma_2019_05_024 crossref_primary_10_3390_electronics9050837 crossref_primary_10_1080_13658816_2018_1555831 crossref_primary_10_1080_00330124_2025_2460997 crossref_primary_10_1109_JIOT_2020_2989398 crossref_primary_10_1016_j_measurement_2022_112257 crossref_primary_10_1080_17445647_2020_1746418 crossref_primary_10_1016_j_jclepro_2024_142794 crossref_primary_10_1007_s12145_024_01588_w crossref_primary_10_1080_13658816_2024_2394651 crossref_primary_10_1111_tgis_12901 crossref_primary_10_1080_13658816_2019_1615071 crossref_primary_10_1080_13658816_2022_2029454 crossref_primary_10_1109_ACCESS_2025_3525660 crossref_primary_10_7717_peerj_cs_263 crossref_primary_10_1111_tgis_12881 crossref_primary_10_1080_13658816_2020_1732393 |
| Cites_doi | 10.1016/j.compenvurbsys.2016.05.001 10.1080/13658816.2016.1170836 10.1016/0098-3004(95)00020-9 10.2307/2347366 10.1080/03610918.2010.500108 10.1080/00045601003791243 10.1080/13658816.2015.1039538 10.1145/1365490.1365500 10.2307/622936 10.1080/01621459.1996.10476720 10.1016/j.compenvurbsys.2008.05.001 10.1080/13658816.2014.918319 10.1080/13658810902950625 10.1080/17538947.2011.587547 10.1080/13658816.2012.692372 10.1137/1114019 10.1214/aos/1176345986 10.1080/00045608.2015.1081120 10.1080/13658816.2015.1089441 10.1109/12.286299 10.2307/1938423 10.1145/356789.356797 10.1038/nrg2857 10.1080/17538947.2016.1239771 10.1007/978-1-4899-3324-9 10.1080/13658816.2013.841318 10.1007/s10708-007-9111-y 10.12988/ams.2013.13133 10.1111/tgis.12213 10.1080/13658816.2013.828840 10.1080/13658816.2014.911300 10.14778/2536222.2536227 10.1016/j.compenvurbsys.2010.04.001 10.1186/1476-072X-9-39 10.1016/j.biocon.2009.05.006 10.2478/amcs-2013-0065 10.1111/j.1365-2745.2009.01510.x 10.1111/j.1467-842X.1990.tb01031.x 10.1111/tgis.12108 10.1080/00401706.1977.10489521 10.2307/1403548 10.1145/321062.321069 10.1111/tgis.2014.18.issue-s1 10.1080/13658810902984228 10.1080/13658816.2015.1058387 10.1080/13658816.2013.778413 10.1080/13658816.2014.976569 10.1371/journal.pbio.1001220 10.1073/pnas.1103051108 10.1016/j.envsoft.2013.09.015 |
| ContentType | Journal Article |
| Copyright | 2017 Informa UK Limited, trading as Taylor & Francis Group 2017 2017 Informa UK Limited, trading as Taylor & Francis Group |
| Copyright_xml | – notice: 2017 Informa UK Limited, trading as Taylor & Francis Group 2017 – notice: 2017 Informa UK Limited, trading as Taylor & Francis Group |
| DBID | AAYXX CITATION 7SC 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1080/13658816.2017.1324975 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1362-3087 1365-8824 |
| EndPage | 2097 |
| ExternalDocumentID | 10_1080_13658816_2017_1324975 1324975 |
| Genre | Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 41431177 funderid: 10.13039/501100001809 – fundername: Natural Science Research Program of Jiangsu grantid: 14KJA170001 – fundername: PAPD, National Key Technology Innovation Project for Water Pollution Control and Remediation grantid: 2013ZX07103006 – fundername: National Basic Research Program of China grantid: 2015CB954102 |
| GroupedDBID | -~X ..I .4S .7F .DC .QJ 0BK 0R~ 29J 30N 4.4 5GY 5VS AAENE AAGDL AAHIA AAIKC AAJMT AALDU AAMIU AAMNW AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABLIJ ABPAQ ABPEM ABRLO ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACHQT ACIWK ACTIO ACUHS ADCVX ADGTB ADXPE AEISY AENEX AEOZL AFKVX AFRAH AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD ARCSS AVBZW AWYRJ BLEHA CAG CCCUG CE4 COF CS3 DGEBU DKSSO DU5 EAP EBO EBS EDO EJD EMK EPL ESX E~A E~B F5P GTTXZ H13 HF~ HZ~ H~9 H~P I-F IPNFZ J.P KYCEM M4Z MM- NA5 NX~ O9- PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TH9 TNC TQWBC TTHFI TUROJ TUS TWF UT5 UU3 ZCA ZGOLN ~02 ~S~ AAYXX CITATION 7SC 8FD ADYSH FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c338t-6783c749ccc2fa3e03d2bee0bb299c2fa49d200f158ee726f9dd3a7797d19ed43 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 36 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000405678300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1365-8816 |
| IngestDate | Fri Jul 25 08:32:45 EDT 2025 Sat Nov 29 06:05:13 EST 2025 Tue Nov 18 22:28:53 EST 2025 Mon Oct 20 23:29:45 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c338t-6783c749ccc2fa3e03d2bee0bb299c2fa49d200f158ee726f9dd3a7797d19ed43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3499-7294 0000-0001-7064-2138 |
| PQID | 1934028531 |
| PQPubID | 53147 |
| PageCount | 30 |
| ParticipantIDs | proquest_journals_1934028531 crossref_citationtrail_10_1080_13658816_2017_1324975 crossref_primary_10_1080_13658816_2017_1324975 informaworld_taylorfrancis_310_1080_13658816_2017_1324975 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-10-03 |
| PublicationDateYYYYMMDD | 2017-10-03 |
| PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-03 day: 03 |
| PublicationDecade | 2010 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon |
| PublicationTitle | International journal of geographical information science : IJGIS |
| PublicationYear | 2017 |
| Publisher | Taylor & Francis Taylor & Francis LLC |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis LLC |
| References | Fotheringham A.S. (CIT0014) 2000 CIT0030 CIT0032 CIT0034 CIT0033 CIT0036 CIT0035 CIT0038 CIT0039 CIT0041 CIT0040 CIT0043 Burt J.E. (CIT0008) 2009 CIT0042 CIT0001 Kirk D.B. (CIT0024) 2012 CIT0045 CIT0044 CIT0003 CIT0047 CIT0002 CIT0046 CIT0005 CIT0049 CIT0004 CIT0048 CIT0007 CIT0006 Jones M.C. (CIT0022) 1996; 11 CIT0009 CIT0050 CIT0052 CIT0051 CIT0010 CIT0054 CIT0053 CIT0012 CIT0056 CIT0055 CIT0058 CIT0057 CIT0016 CIT0015 CIT0059 CIT0018 CIT0017 CIT0019 CIT0060 CIT0021 CIT0020 Evans M.R. (CIT0013) 2013 CIT0025 CIT0026 CIT0029 CIT0028 |
| References_xml | – ident: CIT0055 doi: 10.1016/j.compenvurbsys.2016.05.001 – ident: CIT0056 doi: 10.1080/13658816.2016.1170836 – ident: CIT0007 doi: 10.1016/0098-3004(95)00020-9 – ident: CIT0010 doi: 10.2307/2347366 – ident: CIT0029 doi: 10.1080/03610918.2010.500108 – ident: CIT0045 doi: 10.1080/00045601003791243 – ident: CIT0017 doi: 10.1080/13658816.2015.1039538 – ident: CIT0030 doi: 10.1145/1365490.1365500 – ident: CIT0015 doi: 10.2307/622936 – ident: CIT0035 doi: 10.1080/01621459.1996.10476720 – ident: CIT0051 doi: 10.1016/j.compenvurbsys.2008.05.001 – ident: CIT0032 doi: 10.1080/13658816.2014.918319 – ident: CIT0038 doi: 10.1080/13658810902950625 – ident: CIT0053 doi: 10.1080/17538947.2011.587547 – ident: CIT0058 doi: 10.1080/13658816.2012.692372 – volume-title: CyberGIS: fostering a new wave of geospatial innovation and discovery year: 2013 ident: CIT0013 – ident: CIT0012 doi: 10.1137/1114019 – ident: CIT0001 doi: 10.1214/aos/1176345986 – ident: CIT0020 doi: 10.1080/00045608.2015.1081120 – volume-title: Programming massively parallel processors: a hands-on approach year: 2012 ident: CIT0024 – ident: CIT0026 doi: 10.1080/13658816.2015.1089441 – ident: CIT0044 doi: 10.1109/12.286299 – ident: CIT0048 doi: 10.2307/1938423 – ident: CIT0005 doi: 10.1145/356789.356797 – ident: CIT0036 doi: 10.1038/nrg2857 – ident: CIT0054 doi: 10.1080/17538947.2016.1239771 – ident: CIT0040 doi: 10.1007/978-1-4899-3324-9 – ident: CIT0046 doi: 10.1080/13658816.2013.841318 – ident: CIT0016 doi: 10.1007/s10708-007-9111-y – ident: CIT0028 doi: 10.12988/ams.2013.13133 – ident: CIT0059 doi: 10.1111/tgis.12213 – ident: CIT0057 doi: 10.1080/13658816.2013.828840 – volume-title: Elementary statistics for geographers year: 2009 ident: CIT0008 – ident: CIT0034 doi: 10.1080/13658816.2014.911300 – ident: CIT0002 doi: 10.14778/2536222.2536227 – ident: CIT0052 doi: 10.1016/j.compenvurbsys.2010.04.001 – ident: CIT0009 doi: 10.1186/1476-072X-9-39 – volume: 11 start-page: 337 issue: 3 year: 1996 ident: CIT0022 publication-title: Computational Statistics – ident: CIT0041 doi: 10.1016/j.biocon.2009.05.006 – ident: CIT0003 doi: 10.2478/amcs-2013-0065 – ident: CIT0025 doi: 10.1111/j.1365-2745.2009.01510.x – ident: CIT0021 doi: 10.1111/j.1467-842X.1990.tb01031.x – ident: CIT0039 doi: 10.1111/tgis.12108 – ident: CIT0006 doi: 10.1080/00401706.1977.10489521 – ident: CIT0004 doi: 10.2307/1403548 – ident: CIT0019 doi: 10.1145/321062.321069 – ident: CIT0050 doi: 10.1111/tgis.2014.18.issue-s1 – ident: CIT0018 doi: 10.1080/13658810902984228 – ident: CIT0060 doi: 10.1080/13658816.2015.1058387 – ident: CIT0042 doi: 10.1080/13658816.2013.778413 – ident: CIT0043 doi: 10.1080/13658816.2014.976569 – volume-title: Quantitative geography: perspectives on spatial data analysis year: 2000 ident: CIT0014 – ident: CIT0047 doi: 10.1371/journal.pbio.1001220 – ident: CIT0049 doi: 10.1073/pnas.1103051108 – ident: CIT0033 doi: 10.1016/j.envsoft.2013.09.015 |
| SSID | ssib023898875 ssj0001015 ssib000159086 |
| Score | 2.362259 |
| Snippet | Kernel density estimation (KDE) is a classic approach for spatial point pattern analysis. In many applications, KDE with spatially adaptive bandwidths... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2068 |
| SubjectTerms | Adaptive algorithms Adaptive kernel density estimation Algorithms Bandwidths Big Data Computer applications Cores Data management Data mining Data processing Datasets Fractals GPU/CUDA Graphics processing units Multiprocessing OpenMP optimization Pattern analysis Shopping centers Spatial analysis spatial big data |
| Title | A GPU-accelerated adaptive kernel density estimation approach for efficient point pattern analysis on spatial big data |
| URI | https://www.tandfonline.com/doi/abs/10.1080/13658816.2017.1324975 https://www.proquest.com/docview/1934028531 |
| Volume | 31 |
| WOSCitedRecordID | wos000405678300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1362-3087 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001015 issn: 1365-8816 databaseCode: TFW dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF5EBL34Fh9V9uA1NZtNu9ljEasHKR5a7S1s9qFFiaWJQv-9M8mmWkQ86CWQkE2yj5lvJnz7DSHnOlSGhUoESvAoQPWRAFIwGzhmVMwyrkSlpXd_KwaDZDyWd55NWHhaJebQrhaKqHw1GrfKioYRd4HMrCRhSDBgog3pVCwFbjMH6EfTHPYfvgQwWNN7AbiATxKs6jNAhgXZaXZm4SObPT4_vWUJvZa0Tb_58gqg-lv_0LVtsumjU9qrl9MOWbH5Lln3hdKf5nvkvUev70aB0hrgClUmDFVGTdFn0mc7y-0LNUiJL-cU5TvqfZG0ES6n0BFqK9EKwDo6fZ3gsVL4hJu8PAqFBgXyvOFDsskjRQ7rPhn1r4aXN4Ev3RBoyHnLACCQa5hmrXXkFLchN1FmbZhlAH94KZYG7NOxTmKtiLpOGgPrQkhhmLQm5gdkNX_N7SGhLGZJFstEOteNjQilycDLdp0zIlLS8SMSN1OSaq9rjuU1XlLm5U-bQU1xUFM_qEekvWg2rYU9fmsgv853WlZ_VFxd_iTlv7RtNYsj9T6iSCF0huQdwiV2_IdHn5ANPK34hbxFVsvZmz0la_q9nBSzs8oaPgBHzgJ2 |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZ4SWXhjXjjgTUljtM6HhGigCgVQ4FuluMHVKBStQGJf89dHlCEUAdYMiSxE9t3991Z5-8IOTKhtizUItCCRwGyjwQQgrnAM6tjlnItci69u7bodJJeT06ehcG0SoyhfUEUkdtqVG7cjK5S4o4xNStJGGYYMFGHeCqWojFL5huAtcif323dT7gwWNX7E3IBoSTo1ZeLDCLZqM5mYZ_VKZ_fPvMNv76xm_6w5jlEtZb_Y3ArZKl0UOlJIVGrZMYN1kitrJX--L5O3k7o-c1toI0BxEKiCUu11UM0m_TJjQbumVrMis_eKTJ4FEcjacVdTmEk1OW8FQB3dPjSx2tO8gkvlQwpFBqMMdUbfiTtP1BMY90gt62z7ulFUFZvCAyEvVkAKMgNrLQxJvKau5DbKHUuTFNAQLwVSwsq6lkjcU5ETS-tBdEQUlgmnY35JpkbvAzcFqEsZkkay0R634ytCKVNwdA2vbci0tLzbRJXa6JMSW2OFTaeFSsZUKtJVTipqpzUbVL_bDYsuD2mNZCTC66yfFPFFxVQFJ_Sdq-SDlWaibEC7xnid_CY2M4fuj4ktYvudVu1LztXu2QRH-XphnyPzGWjV7dPFsxb1h-PDnLV-ACqPgag |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8MwFLa4BCzciBsPrIE4Tut4REABgaoOXJvl-ICKqlRtQOLf817icAghBlgyJHlJbL8z-vw9QvZMrC2LtYi04EmE7CMRlGAu8szqlOVci5JL7-ZStNvZ3Z3sBDThKMAqsYb2FVFE6avRuAfW14i4A0RmZRlDgAET-1BOpVI0xskkpM5NVPKr1u2nDAaber9HXAhQEszqI0MGjWzUW7PwmfUmn59e8yV8fSE3_ebMywjVmv-HsS2QuZCe0sNKnxbJmOsvkZnQKf3hdZm8HNLTznWkjYF4hTQTlmqrB-g06aMb9l2PWsTEF68U-TuqjZG0Zi6nMBDqStYKCHZ08NTFY0nxCTcFfhQKAiMEesOH5N17iiDWFXLdOrk6OotC74bIQNFbRBADuYF1NsYkXnMXc5vkzsV5DvEPT6XSgoF61sicE0nTS2tBMYQUlklnU75KJvpPfbdGKEtZlqcyk943UytiaXNws03vrUi09HydpPWSKBOIzbG_Rk-xwH9aT6rCSVVhUtfJ_rvYoGL2-E1Afl5vVZS_VHzV_0TxX2S3auVQwUmMFOTOUL1DvsQ2_vDoXTLdOW6py_P2xSaZxSsl1pBvkYli-Oy2yZR5Kbqj4U5pGG-GDAVS |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+GPU-accelerated+adaptive+kernel+density+estimation+approach+for+efficient+point+pattern+analysis+on+spatial+big+data&rft.jtitle=International+journal+of+geographical+information+science+%3A+IJGIS&rft.au=Zhang%2C+Guiming&rft.au=Zhu%2C+A-Xing&rft.au=Huang%2C+Qunying&rft.date=2017-10-03&rft.issn=1365-8816&rft.eissn=1362-3087&rft.volume=31&rft.issue=10&rft.spage=2068&rft.epage=2097&rft_id=info:doi/10.1080%2F13658816.2017.1324975&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_13658816_2017_1324975 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1365-8816&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1365-8816&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1365-8816&client=summon |