Smoothing Splines for Discontinuous Signals

Smoothing splines are twice differentiable by construction, so they cannot capture potential discontinuities in the underlying signal. In this work, we consider a special case of the weak rod model of Blake and Zisserman that allows for discontinuities penalizing their number by a linear term. The c...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and graphical statistics Vol. 33; no. 2; pp. 651 - 664
Main Authors: Storath, Martin, Weinmann, Andreas
Format: Journal Article
Language:English
Published: Alexandria Taylor & Francis 02.04.2024
Taylor & Francis Ltd
Subjects:
ISSN:1061-8600, 1537-2715
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Smoothing splines are twice differentiable by construction, so they cannot capture potential discontinuities in the underlying signal. In this work, we consider a special case of the weak rod model of Blake and Zisserman that allows for discontinuities penalizing their number by a linear term. The corresponding estimates are cubic smoothing splines with discontinuities (CSSD) which serve as representations of piecewise smooth signals and facilitate exploratory data analysis. However, computing the estimates requires solving a non-convex optimization problem. So far, efficient and exact solvers exist only for a discrete approximation based on equidistantly sampled data. In this work, we propose an efficient solver for the continuous minimization problem with non-equidistantly sampled data. Its worst case complexity is quadratic in the number of data points, and if the number of detected discontinuities scales linearly with the signal length, we observe linear growth in runtime. This efficient algorithm allows to use cross-validation for automatic selection of the hyperparameters within a reasonable time frame on standard hardware. We provide a reference implementation and supplementary material . We demonstrate the applicability of the approach for the aforementioned tasks using both simulated and real data. Supplementary materials for this article are available online.
AbstractList Smoothing splines are twice differentiable by construction, so they cannot capture potential discontinuities in the underlying signal. In this work, we consider a special case of the weak rod model of Blake and Zisserman that allows for discontinuities penalizing their number by a linear term. The corresponding estimates are cubic smoothing splines with discontinuities (CSSD) which serve as representations of piecewise smooth signals and facilitate exploratory data analysis. However, computing the estimates requires solving a non-convex optimization problem. So far, efficient and exact solvers exist only for a discrete approximation based on equidistantly sampled data. In this work, we propose an efficient solver for the continuous minimization problem with non-equidistantly sampled data. Its worst case complexity is quadratic in the number of data points, and if the number of detected discontinuities scales linearly with the signal length, we observe linear growth in runtime. This efficient algorithm allows to use cross-validation for automatic selection of the hyperparameters within a reasonable time frame on standard hardware. We provide a reference implementation and supplementary material . We demonstrate the applicability of the approach for the aforementioned tasks using both simulated and real data. Supplementary materials for this article are available online.
Smoothing splines are twice differentiable by construction, so they cannot capture potential discontinuities in the underlying signal. In this work, we consider a special case of the weak rod model of Blake and Zisserman that allows for discontinuities penalizing their number by a linear term. The corresponding estimates are cubic smoothing splines with discontinuities (CSSD) which serve as representations of piecewise smooth signals and facilitate exploratory data analysis. However, computing the estimates requires solving a non-convex optimization problem. So far, efficient and exact solvers exist only for a discrete approximation based on equidistantly sampled data. In this work, we propose an efficient solver for the continuous minimization problem with non-equidistantly sampled data. Its worst case complexity is quadratic in the number of data points, and if the number of detected discontinuities scales linearly with the signal length, we observe linear growth in runtime. This efficient algorithm allows to use cross-validation for automatic selection of the hyperparameters within a reasonable time frame on standard hardware. We provide a reference implementation and supplementary material. We demonstrate the applicability of the approach for the aforementioned tasks using both simulated and real data. Supplementary materials for this article are available online.
Author Weinmann, Andreas
Storath, Martin
Author_xml – sequence: 1
  givenname: Martin
  orcidid: 0000-0003-1427-0776
  surname: Storath
  fullname: Storath, Martin
  organization: Lab for Mathematical Methods in Computer Vision and Machine Learning, Technische Hochschule Würzburg-Schweinfurt
– sequence: 2
  givenname: Andreas
  orcidid: 0000-0002-4969-7609
  surname: Weinmann
  fullname: Weinmann, Andreas
  organization: Department of Mathematics and Natural Sciences, Hochschule Darmstadt
BookMark eNqFkE1LAzEQhoNUsK3-BGHBo2ydJLvJFi9K_YSCh-o5ZNNsTdkmNcki_fdmbb14UOYwc3je4eUZoYF1ViN0jmGCoYIrDAxXDGBCgNAJIYwAwBEa4pLynHBcDtKdmLyHTtAohHUCMJvyIbpcbJyL78aussW2NVaHrHE-uzNBORuN7VwXsoVZWdmGU3TcpKXPDnuM3h7uX2dP-fzl8Xl2O88VpVXMGStq0KTEuqBS15KXAAVRBKTmSrOKa1mypihqpqZyWbLie-RyqkiFaa3oGF3s_269--h0iGLtOt83EBR4gTFjmCfqek8p70LwuhHKRBlNqu2laQUG0dsRP3ZEb0cc7KR0-Su99WYj_e7f3M0-Z2zytJGfzrdLEeWudb7x0iqTSv794gs0Tnuq
CitedBy_id crossref_primary_10_1109_TNSE_2024_3455784
crossref_primary_10_3390_a18060299
Cites_doi 10.1109/TSP.2014.2329263
10.1080/10618600.2019.1647216
10.1214/07-AOS558
10.1007/s10851-015-0628-2
10.1007/978-0-387-21736-9
10.1038/ng754
10.1080/01621459.2021.1947307
10.1007/s11222-010-9196-x
10.1137/120896256
10.1117/12.467162
10.1098/rspa.2010.0671
10.1109/TNB.2013.2284063
10.1007/BF02162161
10.1109/34.23109
10.1090/S0025-5718-1989-0962209-1
10.1093/imaiai/iaw022
10.1007/s00211-019-01052-8
10.1007/BF01404567
10.1111/j.2517-6161.1985.tb01327.x
10.1111/rssb.12322
10.1214/aos/1176346710
10.1038/nature04003
10.1111/rssb.12047
10.1080/10618600.2021.1999827
10.1098/rspa.2014.0638
10.1002/mana.200510627
10.1007/s11222-016-9687-5
10.1016/j.sigpro.2019.107299
10.1093/nar/gng001
10.1073/pnas.52.4.947
10.1002/cpa.3160420503
10.1007/978-3-642-55760-6
10.1093/biomet/41.1-2.100
10.1214/14-AOS1210
10.1016/0167-7152(88)90118-6
10.1137/130950367
10.1017/S0013091500077853
10.7551/mitpress/7132.001.0001
10.1007/s11222-006-8450-8
10.1093/bioinformatics/bth418
10.1111/rssb.12402
10.1093/biomet/81.3.425
10.1201/b15710
10.1007/BF01390708
10.1145/6497.214322
10.2307/1390733
10.1007/BF02458835
10.1080/10618600.2021.2002161
10.1080/00401706.1979.10489751
10.1016/j.rse.2019.04.034
10.1016/j.patter.2021.100256
10.1109/79.799930
10.1080/10485250211388
10.1111/j.1541-0420.2006.00662.x
10.1080/01621459.2012.737745
10.1198/106186008X285591
10.1214/14-AOS1245
10.1146/annurev.biochem.77.070606.101543
10.1007/978-0-387-84858-7
10.1137/1.9781611970128
10.1109/LSP.2001.838216
ContentType Journal Article
Copyright 2023 American Statistical Association and Institute of Mathematical Statistics 2023
2023 American Statistical Association and Institute of Mathematical Statistics
Copyright_xml – notice: 2023 American Statistical Association and Institute of Mathematical Statistics 2023
– notice: 2023 American Statistical Association and Institute of Mathematical Statistics
DBID AAYXX
CITATION
JQ2
DOI 10.1080/10618600.2023.2262000
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1537-2715
EndPage 664
ExternalDocumentID 10_1080_10618600_2023_2262000
2262000
Genre Research Article
GrantInformation_xml – fundername: Bavarian State Ministry of Economic Affairs, Regional Development and Energy
  grantid: DIK-2105-0044/DIK0264
– fundername: Deutsche Forschungsgemeinschaft (DFG)
  grantid: 514177753
GroupedDBID -~X
.4S
.7F
.DC
.QJ
0BK
0R~
30N
4.4
5GY
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACIWK
ACMTB
ACTIO
ACTMH
ADCVX
ADGTB
AEGXH
AELLO
AENEX
AEOZL
AEPSL
AEYOC
AFRVT
AFVYC
AGDLA
AGMYJ
AHDZW
AIAGR
AIJEM
AKBRZ
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CS3
D0L
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
JAA
KYCEM
LJTGL
M4Z
MS~
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SNACF
TAE
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TUS
UT5
UU3
WZA
XWC
ZGOLN
~S~
AAYXX
CITATION
JQ2
ID FETCH-LOGICAL-c338t-664b0e251e43aeba750042c20ae7ce687ea56f44b6c9ad56464646ad9c2813bc3
IEDL.DBID TFW
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001119830600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1061-8600
IngestDate Wed Aug 13 11:03:08 EDT 2025
Sat Nov 29 03:24:19 EST 2025
Tue Nov 18 21:39:56 EST 2025
Mon Oct 20 23:49:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-664b0e251e43aeba750042c20ae7ce687ea56f44b6c9ad56464646ad9c2813bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1427-0776
0000-0002-4969-7609
PQID 3074116617
PQPubID 29738
PageCount 14
ParticipantIDs crossref_citationtrail_10_1080_10618600_2023_2262000
crossref_primary_10_1080_10618600_2023_2262000
proquest_journals_3074116617
informaworld_taylorfrancis_310_1080_10618600_2023_2262000
PublicationCentury 2000
PublicationDate 2024-04-02
PublicationDateYYYYMMDD 2024-04-02
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-02
  day: 02
PublicationDecade 2020
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle Journal of computational and graphical statistics
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_4_3_1
e_1_3_4_61_1
e_1_3_4_63_1
e_1_3_4_9_1
e_1_3_4_42_1
e_1_3_4_7_1
e_1_3_4_40_1
e_1_3_4_5_1
e_1_3_4_23_1
e_1_3_4_46_1
e_1_3_4_69_1
e_1_3_4_21_1
e_1_3_4_44_1
Mallat S. (e_1_3_4_37_1) 2008
e_1_3_4_27_1
e_1_3_4_65_1
e_1_3_4_25_1
e_1_3_4_48_1
e_1_3_4_29_1
(e_1_3_4_35_1) 2011; 467
e_1_3_4_72_1
Mumford D. (e_1_3_4_39_1) 1985; 17
e_1_3_4_53_1
e_1_3_4_30_1
e_1_3_4_51_1
e_1_3_4_70_1
e_1_3_4_13_1
e_1_3_4_34_1
e_1_3_4_59_1
e_1_3_4_55_1
e_1_3_4_17_1
e_1_3_4_38_1
e_1_3_4_15_1
e_1_3_4_36_1
e_1_3_4_57_1
e_1_3_4_19_1
e_1_3_4_4_1
e_1_3_4_2_1
e_1_3_4_62_1
e_1_3_4_64_1
e_1_3_4_8_1
e_1_3_4_20_1
e_1_3_4_41_1
e_1_3_4_6_1
e_1_3_4_60_1
e_1_3_4_24_1
e_1_3_4_45_1
e_1_3_4_22_1
e_1_3_4_43_1
e_1_3_4_28_1
e_1_3_4_49_1
e_1_3_4_66_1
e_1_3_4_26_1
e_1_3_4_47_1
e_1_3_4_68_1
Kleinberg J. (e_1_3_4_32_1) 2006
Winkler G. (e_1_3_4_67_1) 2005; 107
e_1_3_4_73_1
e_1_3_4_31_1
e_1_3_4_52_1
e_1_3_4_50_1
e_1_3_4_71_1
e_1_3_4_12_1
e_1_3_4_58_1
e_1_3_4_10_1
e_1_3_4_33_1
e_1_3_4_54_1
e_1_3_4_16_1
De Boor C. (e_1_3_4_11_1) 2001
e_1_3_4_14_1
e_1_3_4_56_1
e_1_3_4_18_1
References_xml – ident: e_1_3_4_50_1
  doi: 10.1109/TSP.2014.2329263
– ident: e_1_3_4_8_1
– ident: e_1_3_4_53_1
  doi: 10.1080/10618600.2019.1647216
– ident: e_1_3_4_44_1
– ident: e_1_3_4_7_1
  doi: 10.1214/07-AOS558
– ident: e_1_3_4_61_1
  doi: 10.1007/s10851-015-0628-2
– ident: e_1_3_4_59_1
  doi: 10.1007/978-0-387-21736-9
– volume-title: A Wavelet Tour of Signal Processing: The Sparse Way
  year: 2008
  ident: e_1_3_4_37_1
– ident: e_1_3_4_47_1
  doi: 10.1038/ng754
– ident: e_1_3_4_69_1
  doi: 10.1080/01621459.2021.1947307
– ident: e_1_3_4_2_1
  doi: 10.1007/s11222-010-9196-x
– volume: 17
  start-page: 137
  year: 1985
  ident: e_1_3_4_39_1
  article-title: “Boundary Detection by Minimizing Functionals,” in
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– ident: e_1_3_4_62_1
  doi: 10.1137/120896256
– volume-title: A Practical Guide to Splines - Revised Edition
  year: 2001
  ident: e_1_3_4_11_1
– ident: e_1_3_4_56_1
  doi: 10.1117/12.467162
– ident: e_1_3_4_34_1
  doi: 10.1098/rspa.2010.0671
– ident: e_1_3_4_24_1
  doi: 10.1109/TNB.2013.2284063
– ident: e_1_3_4_42_1
  doi: 10.1007/BF02162161
– ident: e_1_3_4_5_1
  doi: 10.1109/34.23109
– ident: e_1_3_4_14_1
  doi: 10.1090/S0025-5718-1989-0962209-1
– ident: e_1_3_4_51_1
  doi: 10.1093/imaiai/iaw022
– ident: e_1_3_4_52_1
  doi: 10.1007/s00211-019-01052-8
– ident: e_1_3_4_9_1
  doi: 10.1007/BF01404567
– ident: e_1_3_4_46_1
  doi: 10.1111/j.2517-6161.1985.tb01327.x
– ident: e_1_3_4_4_1
  doi: 10.1111/rssb.12322
– ident: e_1_3_4_45_1
  doi: 10.1214/aos/1176346710
– ident: e_1_3_4_48_1
  doi: 10.1038/nature04003
– ident: e_1_3_4_17_1
  doi: 10.1111/rssb.12047
– ident: e_1_3_4_28_1
  doi: 10.1080/10618600.2021.1999827
– volume: 107
  start-page: 57
  year: 2005
  ident: e_1_3_4_67_1
  article-title: “Don’t Shed Tears over Breaks,”
  publication-title: Jahresbericht DMV
– ident: e_1_3_4_60_1
  doi: 10.1098/rspa.2014.0638
– ident: e_1_3_4_68_1
  doi: 10.1002/mana.200510627
– ident: e_1_3_4_23_1
  doi: 10.1007/s11222-016-9687-5
– ident: e_1_3_4_54_1
  doi: 10.1016/j.sigpro.2019.107299
– ident: e_1_3_4_64_1
– volume-title: Algorithm Design
  year: 2006
  ident: e_1_3_4_32_1
– ident: e_1_3_4_15_1
  doi: 10.1093/nar/gng001
– ident: e_1_3_4_43_1
  doi: 10.1073/pnas.52.4.947
– ident: e_1_3_4_40_1
  doi: 10.1002/cpa.3160420503
– ident: e_1_3_4_65_1
  doi: 10.1007/978-3-642-55760-6
– ident: e_1_3_4_41_1
  doi: 10.1093/biomet/41.1-2.100
– ident: e_1_3_4_73_1
  doi: 10.1214/14-AOS1210
– ident: e_1_3_4_70_1
  doi: 10.1016/0167-7152(88)90118-6
– ident: e_1_3_4_49_1
  doi: 10.1137/130950367
– ident: e_1_3_4_10_1
– ident: e_1_3_4_63_1
  doi: 10.1017/S0013091500077853
– ident: e_1_3_4_6_1
  doi: 10.7551/mitpress/7132.001.0001
– ident: e_1_3_4_16_1
  doi: 10.1007/s11222-006-8450-8
– ident: e_1_3_4_25_1
  doi: 10.1093/bioinformatics/bth418
– volume: 467
  start-page: 3115
  volume-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science
  year: 2011
  ident: e_1_3_4_35_1
– ident: e_1_3_4_31_1
  doi: 10.1111/rssb.12402
– ident: e_1_3_4_13_1
  doi: 10.1093/biomet/81.3.425
– ident: e_1_3_4_21_1
  doi: 10.1201/b15710
– ident: e_1_3_4_12_1
  doi: 10.1007/BF01390708
– ident: e_1_3_4_26_1
  doi: 10.1145/6497.214322
– ident: e_1_3_4_33_1
  doi: 10.2307/1390733
– ident: e_1_3_4_3_1
  doi: 10.1007/BF02458835
– ident: e_1_3_4_38_1
  doi: 10.1080/10618600.2021.2002161
– ident: e_1_3_4_57_1
– ident: e_1_3_4_20_1
  doi: 10.1080/00401706.1979.10489751
– ident: e_1_3_4_72_1
  doi: 10.1016/j.rse.2019.04.034
– ident: e_1_3_4_36_1
  doi: 10.1016/j.patter.2021.100256
– ident: e_1_3_4_55_1
  doi: 10.1109/79.799930
– ident: e_1_3_4_66_1
  doi: 10.1080/10485250211388
– ident: e_1_3_4_71_1
  doi: 10.1111/j.1541-0420.2006.00662.x
– ident: e_1_3_4_30_1
  doi: 10.1080/01621459.2012.737745
– ident: e_1_3_4_18_1
  doi: 10.1198/106186008X285591
– ident: e_1_3_4_19_1
  doi: 10.1214/14-AOS1245
– ident: e_1_3_4_29_1
  doi: 10.1146/annurev.biochem.77.070606.101543
– ident: e_1_3_4_22_1
  doi: 10.1007/978-0-387-84858-7
– ident: e_1_3_4_58_1
  doi: 10.1137/1.9781611970128
– ident: e_1_3_4_27_1
  doi: 10.1109/LSP.2001.838216
SSID ssj0001697
Score 2.4117837
Snippet Smoothing splines are twice differentiable by construction, so they cannot capture potential discontinuities in the underlying signal. In this work, we...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 651
SubjectTerms Algorithms
Convexity
Data analysis
Data points
Discontinuity
Estimates
Nonparametric regression
Numerical optimization
Penalized optimization
Sampled data
Signal processing
Smoothing
Solvers
Title Smoothing Splines for Discontinuous Signals
URI https://www.tandfonline.com/doi/abs/10.1080/10618600.2023.2262000
https://www.proquest.com/docview/3074116617
Volume 33
WOSCitedRecordID wos001119830600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1537-2715
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001697
  issn: 1061-8600
  databaseCode: TFW
  dateStart: 19920301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLbQxGEceAwQg4F64IY6-k56RMDEhQlpQ-xWJWmCJkGH1o3fj92mExNCO4B6ysFWZMfx58r5DHApPSk9hkWO8fLEjRTWKcLPqXEtFFyJNA-5qYZNsOGQTybpk-0mLG1bJdXQpiaKqO5qCm4hy6Yj7pqqGI6Juk-jv_sBUap7VLVj6qfQHA9eVnexb8eroIRLIs0bnt-0rGWnNe7SH3d1lYAGe_-w9X3YtejTuamPywFs6aIDO48r6tayA22CnzV78yFcjd5n6EpMb86Inu7q0sG9OnfTklrcp8Vytiyd0fSVSJiP4HlwP759cO14BVdhXbpwkySSnkZ8o6NQaCkQO2AEq8ATmimdcKZFnJgokolKRR4nUfWJPFUB90OpwmNoFbNCn4DDEEVybhDtGIkqYsFYbGRIXGGx8aXsQtSYNVOWe5xGYLxlvqUobQyTkWEya5gu9FdiHzX5xiaB9LvPskX118PUI0qycINsr3FwZuMYRQhx-Yhh2OkfVJ9BG5d1w0_Qg9ZivtTnsK0-0Z3zi-rEfgGrtOMP
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA6igvXgoypWq-7Bm2zdd7JHUUvFtpdW7C0k2UQKupVu6-93Zh-lRaQHZY_LhDCTzHwTZr4h5Fo6UjoUkhzjJJEdKMhThJtg4ZovmBJx4jOTD5ug_T4bjeLlXhgsq8Qc2hREEbmvxsuNj9FVSdwtpjEMInULZ3-3PORUdyBt3woh1iJ__rD9uvDGbjlgBURslKm6eH5bZiU-rbCX_vDWeQhq7__H5g_IXglArbvixBySDZ3WyW5vwd6a1UkNEWhB4HxEbgYfE7AmRDhrgN27OrNgs9bDOMMq93E6n8wzazB-Qx7mY_LSfhzed-xywoKtIDWd2VEUSEcDxNGBL7QUAB_gEivPEZoqHTGqRRiZIJCRikUSRkH-iSRWHnN9qfwTsplOUn1KLApAkjEDgMdIWCIUlIZG-kgXFhpXygYJKr1yVdKP4xSMd-6WLKWVYjgqhpeKaZDWQuyz4N9YJxAvG43P8ocPU0wp4f4a2WZlYV5eZRBB0OUCjKFnf1j6iux0hr0u7z71n89JDX4V9T9ek2zOpnN9QbbVF5h2epkf328sQOc5
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS8MwEA6iIvPBH1NxOrUPvklnu7ZJ-ijOoqhjsIl7C0mayEC7sW7-_V7adDhE9qD0MVwId5e778rlO4QuhSeER6DI0V6K3VBCncL91DSuBZxKHqcB1cWwCdLt0uEw7tluwty2VZoaWpdEEUWsNpd7kuqqI-7aVDEUEnXLjP5utQ2lugdV-wZAZ2ycfJC8LoKxb-ergIhrZKpHPL9ts5SelshLfwTrIgMlu_9w9j20Y-Gnc1P6yz5aU1kdbT8vuFvzOqoZ_FnSNx-gq_7HGGwJ-c3pm7e7KnfgrE5nlJse91E2H89zpz96MyzMh-gluRvc3rt2voIroTCduRiHwlMAcFQYcCU4gAe4wrLtcUWkwpQoHmEdhgLLmKcRDouPp7FsUz8QMjhC69k4U8fIIQAjKdUAd7SALSJOSKRFYMjCIu0L0UBhpVYmLfm4mYHxznzLUVophhnFMKuYBmotxCYl-8Yqgfi7zdis-O2hyxklLFgh26wMzOxFBhEDuXwAMeTkD1tfoK1eJ2FPD93HU1SDlbL5p91E67PpXJ2hTfkJlp2eF877BXXT5es
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smoothing+Splines+for+Discontinuous+Signals&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=Storath%2C+Martin&rft.au=Weinmann%2C+Andreas&rft.date=2024-04-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1061-8600&rft.eissn=1537-2715&rft.volume=33&rft.issue=2&rft.spage=651&rft.epage=664&rft_id=info:doi/10.1080%2F10618600.2023.2262000&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon