Smoothing Splines for Discontinuous Signals
Smoothing splines are twice differentiable by construction, so they cannot capture potential discontinuities in the underlying signal. In this work, we consider a special case of the weak rod model of Blake and Zisserman that allows for discontinuities penalizing their number by a linear term. The c...
Saved in:
| Published in: | Journal of computational and graphical statistics Vol. 33; no. 2; pp. 651 - 664 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Alexandria
Taylor & Francis
02.04.2024
Taylor & Francis Ltd |
| Subjects: | |
| ISSN: | 1061-8600, 1537-2715 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Smoothing splines are twice differentiable by construction, so they cannot capture potential discontinuities in the underlying signal. In this work, we consider a special case of the weak rod model of Blake and Zisserman that allows for discontinuities penalizing their number by a linear term. The corresponding estimates are cubic smoothing splines with discontinuities (CSSD) which serve as representations of piecewise smooth signals and facilitate exploratory data analysis. However, computing the estimates requires solving a non-convex optimization problem. So far, efficient and exact solvers exist only for a discrete approximation based on equidistantly sampled data. In this work, we propose an efficient solver for the continuous minimization problem with non-equidistantly sampled data. Its worst case complexity is quadratic in the number of data points, and if the number of detected discontinuities scales linearly with the signal length, we observe linear growth in runtime. This efficient algorithm allows to use cross-validation for automatic selection of the hyperparameters within a reasonable time frame on standard hardware. We provide a reference implementation and
supplementary material
. We demonstrate the applicability of the approach for the aforementioned tasks using both simulated and real data.
Supplementary materials
for this article are available online. |
|---|---|
| AbstractList | Smoothing splines are twice differentiable by construction, so they cannot capture potential discontinuities in the underlying signal. In this work, we consider a special case of the weak rod model of Blake and Zisserman that allows for discontinuities penalizing their number by a linear term. The corresponding estimates are cubic smoothing splines with discontinuities (CSSD) which serve as representations of piecewise smooth signals and facilitate exploratory data analysis. However, computing the estimates requires solving a non-convex optimization problem. So far, efficient and exact solvers exist only for a discrete approximation based on equidistantly sampled data. In this work, we propose an efficient solver for the continuous minimization problem with non-equidistantly sampled data. Its worst case complexity is quadratic in the number of data points, and if the number of detected discontinuities scales linearly with the signal length, we observe linear growth in runtime. This efficient algorithm allows to use cross-validation for automatic selection of the hyperparameters within a reasonable time frame on standard hardware. We provide a reference implementation and
supplementary material
. We demonstrate the applicability of the approach for the aforementioned tasks using both simulated and real data.
Supplementary materials
for this article are available online. Smoothing splines are twice differentiable by construction, so they cannot capture potential discontinuities in the underlying signal. In this work, we consider a special case of the weak rod model of Blake and Zisserman that allows for discontinuities penalizing their number by a linear term. The corresponding estimates are cubic smoothing splines with discontinuities (CSSD) which serve as representations of piecewise smooth signals and facilitate exploratory data analysis. However, computing the estimates requires solving a non-convex optimization problem. So far, efficient and exact solvers exist only for a discrete approximation based on equidistantly sampled data. In this work, we propose an efficient solver for the continuous minimization problem with non-equidistantly sampled data. Its worst case complexity is quadratic in the number of data points, and if the number of detected discontinuities scales linearly with the signal length, we observe linear growth in runtime. This efficient algorithm allows to use cross-validation for automatic selection of the hyperparameters within a reasonable time frame on standard hardware. We provide a reference implementation and supplementary material. We demonstrate the applicability of the approach for the aforementioned tasks using both simulated and real data. Supplementary materials for this article are available online. |
| Author | Weinmann, Andreas Storath, Martin |
| Author_xml | – sequence: 1 givenname: Martin orcidid: 0000-0003-1427-0776 surname: Storath fullname: Storath, Martin organization: Lab for Mathematical Methods in Computer Vision and Machine Learning, Technische Hochschule Würzburg-Schweinfurt – sequence: 2 givenname: Andreas orcidid: 0000-0002-4969-7609 surname: Weinmann fullname: Weinmann, Andreas organization: Department of Mathematics and Natural Sciences, Hochschule Darmstadt |
| BookMark | eNqFkE1LAzEQhoNUsK3-BGHBo2ydJLvJFi9K_YSCh-o5ZNNsTdkmNcki_fdmbb14UOYwc3je4eUZoYF1ViN0jmGCoYIrDAxXDGBCgNAJIYwAwBEa4pLynHBcDtKdmLyHTtAohHUCMJvyIbpcbJyL78aussW2NVaHrHE-uzNBORuN7VwXsoVZWdmGU3TcpKXPDnuM3h7uX2dP-fzl8Xl2O88VpVXMGStq0KTEuqBS15KXAAVRBKTmSrOKa1mypihqpqZyWbLie-RyqkiFaa3oGF3s_269--h0iGLtOt83EBR4gTFjmCfqek8p70LwuhHKRBlNqu2laQUG0dsRP3ZEb0cc7KR0-Su99WYj_e7f3M0-Z2zytJGfzrdLEeWudb7x0iqTSv794gs0Tnuq |
| CitedBy_id | crossref_primary_10_1109_TNSE_2024_3455784 crossref_primary_10_3390_a18060299 |
| Cites_doi | 10.1109/TSP.2014.2329263 10.1080/10618600.2019.1647216 10.1214/07-AOS558 10.1007/s10851-015-0628-2 10.1007/978-0-387-21736-9 10.1038/ng754 10.1080/01621459.2021.1947307 10.1007/s11222-010-9196-x 10.1137/120896256 10.1117/12.467162 10.1098/rspa.2010.0671 10.1109/TNB.2013.2284063 10.1007/BF02162161 10.1109/34.23109 10.1090/S0025-5718-1989-0962209-1 10.1093/imaiai/iaw022 10.1007/s00211-019-01052-8 10.1007/BF01404567 10.1111/j.2517-6161.1985.tb01327.x 10.1111/rssb.12322 10.1214/aos/1176346710 10.1038/nature04003 10.1111/rssb.12047 10.1080/10618600.2021.1999827 10.1098/rspa.2014.0638 10.1002/mana.200510627 10.1007/s11222-016-9687-5 10.1016/j.sigpro.2019.107299 10.1093/nar/gng001 10.1073/pnas.52.4.947 10.1002/cpa.3160420503 10.1007/978-3-642-55760-6 10.1093/biomet/41.1-2.100 10.1214/14-AOS1210 10.1016/0167-7152(88)90118-6 10.1137/130950367 10.1017/S0013091500077853 10.7551/mitpress/7132.001.0001 10.1007/s11222-006-8450-8 10.1093/bioinformatics/bth418 10.1111/rssb.12402 10.1093/biomet/81.3.425 10.1201/b15710 10.1007/BF01390708 10.1145/6497.214322 10.2307/1390733 10.1007/BF02458835 10.1080/10618600.2021.2002161 10.1080/00401706.1979.10489751 10.1016/j.rse.2019.04.034 10.1016/j.patter.2021.100256 10.1109/79.799930 10.1080/10485250211388 10.1111/j.1541-0420.2006.00662.x 10.1080/01621459.2012.737745 10.1198/106186008X285591 10.1214/14-AOS1245 10.1146/annurev.biochem.77.070606.101543 10.1007/978-0-387-84858-7 10.1137/1.9781611970128 10.1109/LSP.2001.838216 |
| ContentType | Journal Article |
| Copyright | 2023 American Statistical Association and Institute of Mathematical Statistics 2023 2023 American Statistical Association and Institute of Mathematical Statistics |
| Copyright_xml | – notice: 2023 American Statistical Association and Institute of Mathematical Statistics 2023 – notice: 2023 American Statistical Association and Institute of Mathematical Statistics |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1080/10618600.2023.2262000 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Mathematics |
| EISSN | 1537-2715 |
| EndPage | 664 |
| ExternalDocumentID | 10_1080_10618600_2023_2262000 2262000 |
| Genre | Research Article |
| GrantInformation_xml | – fundername: Bavarian State Ministry of Economic Affairs, Regional Development and Energy grantid: DIK-2105-0044/DIK0264 – fundername: Deutsche Forschungsgemeinschaft (DFG) grantid: 514177753 |
| GroupedDBID | -~X .4S .7F .DC .QJ 0BK 0R~ 30N 4.4 5GY AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABTAI ABXUL ABXYU ABYWD ACGFO ACGFS ACIWK ACMTB ACTIO ACTMH ADCVX ADGTB AEGXH AELLO AENEX AEOZL AEPSL AEYOC AFRVT AFVYC AGDLA AGMYJ AHDZW AIAGR AIJEM AKBRZ AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMVHM AQRUH AQTUD ARCSS AVBZW AWYRJ BLEHA CCCUG CS3 D0L DGEBU DKSSO DU5 EBS E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P JAA KYCEM LJTGL M4Z MS~ NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ RWL RXW S-T SNACF TAE TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TUS UT5 UU3 WZA XWC ZGOLN ~S~ AAYXX CITATION JQ2 |
| ID | FETCH-LOGICAL-c338t-664b0e251e43aeba750042c20ae7ce687ea56f44b6c9ad56464646ad9c2813bc3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001119830600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1061-8600 |
| IngestDate | Wed Aug 13 11:03:08 EDT 2025 Sat Nov 29 03:24:19 EST 2025 Tue Nov 18 21:39:56 EST 2025 Mon Oct 20 23:49:33 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c338t-664b0e251e43aeba750042c20ae7ce687ea56f44b6c9ad56464646ad9c2813bc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1427-0776 0000-0002-4969-7609 |
| PQID | 3074116617 |
| PQPubID | 29738 |
| PageCount | 14 |
| ParticipantIDs | crossref_citationtrail_10_1080_10618600_2023_2262000 crossref_primary_10_1080_10618600_2023_2262000 proquest_journals_3074116617 informaworld_taylorfrancis_310_1080_10618600_2023_2262000 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-02 |
| PublicationDateYYYYMMDD | 2024-04-02 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | Alexandria |
| PublicationPlace_xml | – name: Alexandria |
| PublicationTitle | Journal of computational and graphical statistics |
| PublicationYear | 2024 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | e_1_3_4_3_1 e_1_3_4_61_1 e_1_3_4_63_1 e_1_3_4_9_1 e_1_3_4_42_1 e_1_3_4_7_1 e_1_3_4_40_1 e_1_3_4_5_1 e_1_3_4_23_1 e_1_3_4_46_1 e_1_3_4_69_1 e_1_3_4_21_1 e_1_3_4_44_1 Mallat S. (e_1_3_4_37_1) 2008 e_1_3_4_27_1 e_1_3_4_65_1 e_1_3_4_25_1 e_1_3_4_48_1 e_1_3_4_29_1 (e_1_3_4_35_1) 2011; 467 e_1_3_4_72_1 Mumford D. (e_1_3_4_39_1) 1985; 17 e_1_3_4_53_1 e_1_3_4_30_1 e_1_3_4_51_1 e_1_3_4_70_1 e_1_3_4_13_1 e_1_3_4_34_1 e_1_3_4_59_1 e_1_3_4_55_1 e_1_3_4_17_1 e_1_3_4_38_1 e_1_3_4_15_1 e_1_3_4_36_1 e_1_3_4_57_1 e_1_3_4_19_1 e_1_3_4_4_1 e_1_3_4_2_1 e_1_3_4_62_1 e_1_3_4_64_1 e_1_3_4_8_1 e_1_3_4_20_1 e_1_3_4_41_1 e_1_3_4_6_1 e_1_3_4_60_1 e_1_3_4_24_1 e_1_3_4_45_1 e_1_3_4_22_1 e_1_3_4_43_1 e_1_3_4_28_1 e_1_3_4_49_1 e_1_3_4_66_1 e_1_3_4_26_1 e_1_3_4_47_1 e_1_3_4_68_1 Kleinberg J. (e_1_3_4_32_1) 2006 Winkler G. (e_1_3_4_67_1) 2005; 107 e_1_3_4_73_1 e_1_3_4_31_1 e_1_3_4_52_1 e_1_3_4_50_1 e_1_3_4_71_1 e_1_3_4_12_1 e_1_3_4_58_1 e_1_3_4_10_1 e_1_3_4_33_1 e_1_3_4_54_1 e_1_3_4_16_1 De Boor C. (e_1_3_4_11_1) 2001 e_1_3_4_14_1 e_1_3_4_56_1 e_1_3_4_18_1 |
| References_xml | – ident: e_1_3_4_50_1 doi: 10.1109/TSP.2014.2329263 – ident: e_1_3_4_8_1 – ident: e_1_3_4_53_1 doi: 10.1080/10618600.2019.1647216 – ident: e_1_3_4_44_1 – ident: e_1_3_4_7_1 doi: 10.1214/07-AOS558 – ident: e_1_3_4_61_1 doi: 10.1007/s10851-015-0628-2 – ident: e_1_3_4_59_1 doi: 10.1007/978-0-387-21736-9 – volume-title: A Wavelet Tour of Signal Processing: The Sparse Way year: 2008 ident: e_1_3_4_37_1 – ident: e_1_3_4_47_1 doi: 10.1038/ng754 – ident: e_1_3_4_69_1 doi: 10.1080/01621459.2021.1947307 – ident: e_1_3_4_2_1 doi: 10.1007/s11222-010-9196-x – volume: 17 start-page: 137 year: 1985 ident: e_1_3_4_39_1 article-title: “Boundary Detection by Minimizing Functionals,” in publication-title: IEEE Conference on Computer Vision and Pattern Recognition – ident: e_1_3_4_62_1 doi: 10.1137/120896256 – volume-title: A Practical Guide to Splines - Revised Edition year: 2001 ident: e_1_3_4_11_1 – ident: e_1_3_4_56_1 doi: 10.1117/12.467162 – ident: e_1_3_4_34_1 doi: 10.1098/rspa.2010.0671 – ident: e_1_3_4_24_1 doi: 10.1109/TNB.2013.2284063 – ident: e_1_3_4_42_1 doi: 10.1007/BF02162161 – ident: e_1_3_4_5_1 doi: 10.1109/34.23109 – ident: e_1_3_4_14_1 doi: 10.1090/S0025-5718-1989-0962209-1 – ident: e_1_3_4_51_1 doi: 10.1093/imaiai/iaw022 – ident: e_1_3_4_52_1 doi: 10.1007/s00211-019-01052-8 – ident: e_1_3_4_9_1 doi: 10.1007/BF01404567 – ident: e_1_3_4_46_1 doi: 10.1111/j.2517-6161.1985.tb01327.x – ident: e_1_3_4_4_1 doi: 10.1111/rssb.12322 – ident: e_1_3_4_45_1 doi: 10.1214/aos/1176346710 – ident: e_1_3_4_48_1 doi: 10.1038/nature04003 – ident: e_1_3_4_17_1 doi: 10.1111/rssb.12047 – ident: e_1_3_4_28_1 doi: 10.1080/10618600.2021.1999827 – volume: 107 start-page: 57 year: 2005 ident: e_1_3_4_67_1 article-title: “Don’t Shed Tears over Breaks,” publication-title: Jahresbericht DMV – ident: e_1_3_4_60_1 doi: 10.1098/rspa.2014.0638 – ident: e_1_3_4_68_1 doi: 10.1002/mana.200510627 – ident: e_1_3_4_23_1 doi: 10.1007/s11222-016-9687-5 – ident: e_1_3_4_54_1 doi: 10.1016/j.sigpro.2019.107299 – ident: e_1_3_4_64_1 – volume-title: Algorithm Design year: 2006 ident: e_1_3_4_32_1 – ident: e_1_3_4_15_1 doi: 10.1093/nar/gng001 – ident: e_1_3_4_43_1 doi: 10.1073/pnas.52.4.947 – ident: e_1_3_4_40_1 doi: 10.1002/cpa.3160420503 – ident: e_1_3_4_65_1 doi: 10.1007/978-3-642-55760-6 – ident: e_1_3_4_41_1 doi: 10.1093/biomet/41.1-2.100 – ident: e_1_3_4_73_1 doi: 10.1214/14-AOS1210 – ident: e_1_3_4_70_1 doi: 10.1016/0167-7152(88)90118-6 – ident: e_1_3_4_49_1 doi: 10.1137/130950367 – ident: e_1_3_4_10_1 – ident: e_1_3_4_63_1 doi: 10.1017/S0013091500077853 – ident: e_1_3_4_6_1 doi: 10.7551/mitpress/7132.001.0001 – ident: e_1_3_4_16_1 doi: 10.1007/s11222-006-8450-8 – ident: e_1_3_4_25_1 doi: 10.1093/bioinformatics/bth418 – volume: 467 start-page: 3115 volume-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science year: 2011 ident: e_1_3_4_35_1 – ident: e_1_3_4_31_1 doi: 10.1111/rssb.12402 – ident: e_1_3_4_13_1 doi: 10.1093/biomet/81.3.425 – ident: e_1_3_4_21_1 doi: 10.1201/b15710 – ident: e_1_3_4_12_1 doi: 10.1007/BF01390708 – ident: e_1_3_4_26_1 doi: 10.1145/6497.214322 – ident: e_1_3_4_33_1 doi: 10.2307/1390733 – ident: e_1_3_4_3_1 doi: 10.1007/BF02458835 – ident: e_1_3_4_38_1 doi: 10.1080/10618600.2021.2002161 – ident: e_1_3_4_57_1 – ident: e_1_3_4_20_1 doi: 10.1080/00401706.1979.10489751 – ident: e_1_3_4_72_1 doi: 10.1016/j.rse.2019.04.034 – ident: e_1_3_4_36_1 doi: 10.1016/j.patter.2021.100256 – ident: e_1_3_4_55_1 doi: 10.1109/79.799930 – ident: e_1_3_4_66_1 doi: 10.1080/10485250211388 – ident: e_1_3_4_71_1 doi: 10.1111/j.1541-0420.2006.00662.x – ident: e_1_3_4_30_1 doi: 10.1080/01621459.2012.737745 – ident: e_1_3_4_18_1 doi: 10.1198/106186008X285591 – ident: e_1_3_4_19_1 doi: 10.1214/14-AOS1245 – ident: e_1_3_4_29_1 doi: 10.1146/annurev.biochem.77.070606.101543 – ident: e_1_3_4_22_1 doi: 10.1007/978-0-387-84858-7 – ident: e_1_3_4_58_1 doi: 10.1137/1.9781611970128 – ident: e_1_3_4_27_1 doi: 10.1109/LSP.2001.838216 |
| SSID | ssj0001697 |
| Score | 2.4117837 |
| Snippet | Smoothing splines are twice differentiable by construction, so they cannot capture potential discontinuities in the underlying signal. In this work, we... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 651 |
| SubjectTerms | Algorithms Convexity Data analysis Data points Discontinuity Estimates Nonparametric regression Numerical optimization Penalized optimization Sampled data Signal processing Smoothing Solvers |
| Title | Smoothing Splines for Discontinuous Signals |
| URI | https://www.tandfonline.com/doi/abs/10.1080/10618600.2023.2262000 https://www.proquest.com/docview/3074116617 |
| Volume | 33 |
| WOSCitedRecordID | wos001119830600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 1537-2715 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001697 issn: 1061-8600 databaseCode: TFW dateStart: 19920301 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLbQxGEceAwQg4F64IY6-k56RMDEhQlpQ-xWJWmCJkGH1o3fj92mExNCO4B6ysFWZMfx58r5DHApPSk9hkWO8fLEjRTWKcLPqXEtFFyJNA-5qYZNsOGQTybpk-0mLG1bJdXQpiaKqO5qCm4hy6Yj7pqqGI6Juk-jv_sBUap7VLVj6qfQHA9eVnexb8eroIRLIs0bnt-0rGWnNe7SH3d1lYAGe_-w9X3YtejTuamPywFs6aIDO48r6tayA22CnzV78yFcjd5n6EpMb86Inu7q0sG9OnfTklrcp8Vytiyd0fSVSJiP4HlwP759cO14BVdhXbpwkySSnkZ8o6NQaCkQO2AEq8ATmimdcKZFnJgokolKRR4nUfWJPFUB90OpwmNoFbNCn4DDEEVybhDtGIkqYsFYbGRIXGGx8aXsQtSYNVOWe5xGYLxlvqUobQyTkWEya5gu9FdiHzX5xiaB9LvPskX118PUI0qycINsr3FwZuMYRQhx-Yhh2OkfVJ9BG5d1w0_Qg9ZivtTnsK0-0Z3zi-rEfgGrtOMP |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA6igvXgoypWq-7Bm2zdd7JHUUvFtpdW7C0k2UQKupVu6-93Zh-lRaQHZY_LhDCTzHwTZr4h5Fo6UjoUkhzjJJEdKMhThJtg4ZovmBJx4jOTD5ug_T4bjeLlXhgsq8Qc2hREEbmvxsuNj9FVSdwtpjEMInULZ3-3PORUdyBt3woh1iJ__rD9uvDGbjlgBURslKm6eH5bZiU-rbCX_vDWeQhq7__H5g_IXglArbvixBySDZ3WyW5vwd6a1UkNEWhB4HxEbgYfE7AmRDhrgN27OrNgs9bDOMMq93E6n8wzazB-Qx7mY_LSfhzed-xywoKtIDWd2VEUSEcDxNGBL7QUAB_gEivPEZoqHTGqRRiZIJCRikUSRkH-iSRWHnN9qfwTsplOUn1KLApAkjEDgMdIWCIUlIZG-kgXFhpXygYJKr1yVdKP4xSMd-6WLKWVYjgqhpeKaZDWQuyz4N9YJxAvG43P8ocPU0wp4f4a2WZlYV5eZRBB0OUCjKFnf1j6iux0hr0u7z71n89JDX4V9T9ek2zOpnN9QbbVF5h2epkf328sQOc5 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS8MwEA6iIvPBH1NxOrUPvklnu7ZJ-ijOoqhjsIl7C0mayEC7sW7-_V7adDhE9qD0MVwId5e778rlO4QuhSeER6DI0V6K3VBCncL91DSuBZxKHqcB1cWwCdLt0uEw7tluwty2VZoaWpdEEUWsNpd7kuqqI-7aVDEUEnXLjP5utQ2lugdV-wZAZ2ycfJC8LoKxb-ergIhrZKpHPL9ts5SelshLfwTrIgMlu_9w9j20Y-Gnc1P6yz5aU1kdbT8vuFvzOqoZ_FnSNx-gq_7HGGwJ-c3pm7e7KnfgrE5nlJse91E2H89zpz96MyzMh-gluRvc3rt2voIroTCduRiHwlMAcFQYcCU4gAe4wrLtcUWkwpQoHmEdhgLLmKcRDouPp7FsUz8QMjhC69k4U8fIIQAjKdUAd7SALSJOSKRFYMjCIu0L0UBhpVYmLfm4mYHxznzLUVophhnFMKuYBmotxCYl-8Yqgfi7zdis-O2hyxklLFgh26wMzOxFBhEDuXwAMeTkD1tfoK1eJ2FPD93HU1SDlbL5p91E67PpXJ2hTfkJlp2eF877BXXT5es |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smoothing+Splines+for+Discontinuous+Signals&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=Storath%2C+Martin&rft.au=Weinmann%2C+Andreas&rft.date=2024-04-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1061-8600&rft.eissn=1537-2715&rft.volume=33&rft.issue=2&rft.spage=651&rft.epage=664&rft_id=info:doi/10.1080%2F10618600.2023.2262000&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon |