A Flexible Framework for Cubic Regularization Algorithms for Nonconvex Optimization in Function Space
We propose a cubic regularization algorithm that is constructed to deal with nonconvex minimization problems in function space. It allows for a flexible choice of the regularization term and thus accounts for the fact that in such problems one often has to deal with more than one norm. Global and lo...
Uloženo v:
| Vydáno v: | Numerical functional analysis and optimization Ročník 40; číslo 1; s. 85 - 118 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Abingdon
Taylor & Francis
02.01.2019
Taylor & Francis Ltd |
| Témata: | |
| ISSN: | 0163-0563, 1532-2467 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We propose a cubic regularization algorithm that is constructed to deal with nonconvex minimization problems in function space. It allows for a flexible choice of the regularization term and thus accounts for the fact that in such problems one often has to deal with more than one norm. Global and local convergence results are established in a general framework. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0163-0563 1532-2467 |
| DOI: | 10.1080/01630563.2018.1499114 |