Modified nonlocal boundary value problem method for an ill-posed problem for the biharmonic equation

In this paper, we propose a modified nonlocal boundary value problem method for an homogeneous biharmonic equation in a rectangular domain. We show that the considered problem is ill-posed in the sense of Hadamard, i.e. the solution does not depend continuously on the given data. Convergence estimat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Inverse problems in science and engineering Ročník 27; číslo 3; s. 340 - 368
Hlavní autoři: Benrabah, A., Boussetila, N.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Taylor & Francis 04.03.2019
Témata:
ISSN:1741-5977, 1741-5985
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we propose a modified nonlocal boundary value problem method for an homogeneous biharmonic equation in a rectangular domain. We show that the considered problem is ill-posed in the sense of Hadamard, i.e. the solution does not depend continuously on the given data. Convergence estimates for the regularized solution are obtained under a priori bound assumptions for the exact solution. Some numerical results are given to show the effectiveness of the proposed method.
ISSN:1741-5977
1741-5985
DOI:10.1080/17415977.2018.1461859