Modified nonlocal boundary value problem method for an ill-posed problem for the biharmonic equation
In this paper, we propose a modified nonlocal boundary value problem method for an homogeneous biharmonic equation in a rectangular domain. We show that the considered problem is ill-posed in the sense of Hadamard, i.e. the solution does not depend continuously on the given data. Convergence estimat...
Uloženo v:
| Vydáno v: | Inverse problems in science and engineering Ročník 27; číslo 3; s. 340 - 368 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Taylor & Francis
04.03.2019
|
| Témata: | |
| ISSN: | 1741-5977, 1741-5985 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we propose a modified nonlocal boundary value problem method for an homogeneous biharmonic equation in a rectangular domain. We show that the considered problem is ill-posed in the sense of Hadamard, i.e. the solution does not depend continuously on the given data. Convergence estimates for the regularized solution are obtained under a priori bound assumptions for the exact solution. Some numerical results are given to show the effectiveness of the proposed method. |
|---|---|
| ISSN: | 1741-5977 1741-5985 |
| DOI: | 10.1080/17415977.2018.1461859 |