Adaptive Prescribed-Time Optimal Control for Flexible-Joint Robots via Reinforcement Learning

This article proposes a prescribed-time fuzzy optimal control approach for flexible-joint (FJ) robot systems utilizing the reinforcement learning (RL) strategy. The uniqueness of this method lies in its ability to ensure optimal tracking performance for n-link flexible joint robots within the prescr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on systems, man, and cybernetics. Systems Ročník 55; číslo 4; s. 2633 - 2643
Hlavní autoři: Xie, Shiyu, Sun, Wei, Sun, Yougang, Su, Shun-Feng
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.04.2025
Témata:
ISSN:2168-2216, 2168-2232
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This article proposes a prescribed-time fuzzy optimal control approach for flexible-joint (FJ) robot systems utilizing the reinforcement learning (RL) strategy. The uniqueness of this method lies in its ability to ensure optimal tracking performance for n-link flexible joint robots within the prescribed-time frame, while the actor and critic fuzzy logic system effectively approximate the optimal cost and evaluates system performance. First, the optimal controllers with the auxiliary compensation term are constructed by utilizing the online approximation of the modified performance index function and RL actor-critic structure. The designed controller can deal with unknown structure impacts and avoid model identification. Besides, in designing the prescribed-time scale function, the introduced constant term not only prevents singularity but also allows flexible setting of constraint regions. The proposed scheme is theoretically verified to satisfy the Bellman optimality principle and ensure the tracking error converges to the desired zone within the prescribed time. Finally, the practicability of the designed control scheme is further demonstrated by the 2-link FJ robot simulation example.
ISSN:2168-2216
2168-2232
DOI:10.1109/TSMC.2024.3524448