Adaptive Prescribed-Time Optimal Control for Flexible-Joint Robots via Reinforcement Learning

This article proposes a prescribed-time fuzzy optimal control approach for flexible-joint (FJ) robot systems utilizing the reinforcement learning (RL) strategy. The uniqueness of this method lies in its ability to ensure optimal tracking performance for n-link flexible joint robots within the prescr...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on systems, man, and cybernetics. Systems Ročník 55; číslo 4; s. 2633 - 2643
Hlavní autori: Xie, Shiyu, Sun, Wei, Sun, Yougang, Su, Shun-Feng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 01.04.2025
Predmet:
ISSN:2168-2216, 2168-2232
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This article proposes a prescribed-time fuzzy optimal control approach for flexible-joint (FJ) robot systems utilizing the reinforcement learning (RL) strategy. The uniqueness of this method lies in its ability to ensure optimal tracking performance for n-link flexible joint robots within the prescribed-time frame, while the actor and critic fuzzy logic system effectively approximate the optimal cost and evaluates system performance. First, the optimal controllers with the auxiliary compensation term are constructed by utilizing the online approximation of the modified performance index function and RL actor-critic structure. The designed controller can deal with unknown structure impacts and avoid model identification. Besides, in designing the prescribed-time scale function, the introduced constant term not only prevents singularity but also allows flexible setting of constraint regions. The proposed scheme is theoretically verified to satisfy the Bellman optimality principle and ensure the tracking error converges to the desired zone within the prescribed time. Finally, the practicability of the designed control scheme is further demonstrated by the 2-link FJ robot simulation example.
AbstractList This article proposes a prescribed-time fuzzy optimal control approach for flexible-joint (FJ) robot systems utilizing the reinforcement learning (RL) strategy. The uniqueness of this method lies in its ability to ensure optimal tracking performance for n-link flexible joint robots within the prescribed-time frame, while the actor and critic fuzzy logic system effectively approximate the optimal cost and evaluates system performance. First, the optimal controllers with the auxiliary compensation term are constructed by utilizing the online approximation of the modified performance index function and RL actor-critic structure. The designed controller can deal with unknown structure impacts and avoid model identification. Besides, in designing the prescribed-time scale function, the introduced constant term not only prevents singularity but also allows flexible setting of constraint regions. The proposed scheme is theoretically verified to satisfy the Bellman optimality principle and ensure the tracking error converges to the desired zone within the prescribed time. Finally, the practicability of the designed control scheme is further demonstrated by the 2-link FJ robot simulation example.
Author Sun, Wei
Sun, Yougang
Su, Shun-Feng
Xie, Shiyu
Author_xml – sequence: 1
  givenname: Shiyu
  orcidid: 0009-0006-9822-2649
  surname: Xie
  fullname: Xie, Shiyu
  email: xieshy2188@126.com
  organization: School of Mathematics Science, Liaocheng University, Liaocheng, China
– sequence: 2
  givenname: Wei
  orcidid: 0000-0002-6873-3302
  surname: Sun
  fullname: Sun, Wei
  email: sunw8617@163.com
  organization: School of Mathematics Science, Liaocheng University, Liaocheng, China
– sequence: 3
  givenname: Yougang
  orcidid: 0000-0002-1549-0108
  surname: Sun
  fullname: Sun, Yougang
  email: 1989yoga@tongji.edu.cn
  organization: Institute of Rail Transit, Tongji University, Shanghai, China
– sequence: 4
  givenname: Shun-Feng
  orcidid: 0000-0001-9777-128X
  surname: Su
  fullname: Su, Shun-Feng
  email: sfsu@mail.ntust.edu.tw
  organization: Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
BookMark eNp9kF9LwzAQwIMoOOc-gOBDvkBnLknT9HEM5x8mkzkfpSTpVSJdM9Iy9NvbsiHig0933N3vuPtdkNMmNEjIFbApAMtvNi9P8ylnXE5FyqWU-oSMOCidcC746U8O6pxM2vaDMQZcK8HUiLzNSrPr_B7pc8TWRW-xTDZ-i3TVl7empvPQdDHUtAqRLmr89LbG5DH4pqPrYEPX0r03dI2-6SccbrFvLNHExjfvl-SsMnWLk2Mck9fF7WZ-nyxXdw_z2TJxQuguSZFXZV6yLMuszdNMVqAkWAkawLpSpJimtgJruNUCQVuXqYo5J0CUyhorxiQ77HUxtG3EqnC-M50fTje-LoAVg6hiEFUMooqjqJ6EP-Qu9m_Hr3-Z6wPjEfHXvJZCq1x8Axfbd10
CODEN ITSMFE
CitedBy_id crossref_primary_10_1007_s12555_024_0450_y
crossref_primary_10_1007_s11071_025_11656_5
Cites_doi 10.1109/TNNLS.2019.2955438
10.1109/TAES.2022.3217199
10.1109/TSMC.2020.2975232
10.1109/TCSI.2022.3201200
10.1109/TNNLS.2020.3009214
10.1109/TFUZZ.2024.3355129
10.1109/TAC.2022.3159543
10.1109/TFUZZ.2023.3319316
10.1109/tcsi.2024.3434607
10.1109/TII.2019.2894282
10.1109/TSMC.2022.3230703
10.1109/TCYB.2020.3002108
10.1109/87.338648
10.1016/j.ins.2021.05.028
10.1109/TSMC.2021.3112688
10.1109/TFUZZ.2020.3037957
10.1109/TMECH.2022.3192002
10.1109/TNSE.2023.3330266
10.1109/TAC.2022.3194100
10.1109/tnnls.2024.3386881
10.1002/rnc.6679
10.1515/9781400874651
10.1109/TAES.2023.3261299
10.1109/TFUZZ.2024.3376331
10.1016/j.ins.2024.120484
10.1109/TFUZZ.2022.3227993
10.1109/TAES.2023.3288845
10.1109/TAES.2021.3101562
10.1109/TCYB.2021.3049536
10.1109/TFUZZ.2022.3181463
10.1109/tsmc.2024.3379356
10.1109/TAES.2023.3292809
10.1109/TAES.2023.3341058
10.1109/TFUZZ.2023.3308573
10.1109/TAES.2023.3294893
10.1109/taes.2024.3401668
10.1109/TFUZZ.2023.3277480
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TSMC.2024.3524448
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2168-2232
EndPage 2643
ExternalDocumentID 10_1109_TSMC_2024_3524448
10843869
Genre orig-research
GrantInformation_xml – fundername: Guangyue Young Scholar Innovation Team of Liaocheng University
  grantid: LCUGYTD2022-01
– fundername: Outstanding Youth Foundation of Shandong Province
  grantid: ZR2024YQ033
  funderid: 10.13039/501100010035
– fundername: National Natural Science Foundation of China
  grantid: 62473185
  funderid: 10.13039/501100001809
GroupedDBID 0R~
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
ID FETCH-LOGICAL-c338t-5e2fd9d0777bb9574f1641b41811bcd35e55bf1ba2b83e18bc76f0cc313d6bab3
IEDL.DBID RIE
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001400126700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2216
IngestDate Sat Nov 29 06:50:11 EST 2025
Tue Nov 18 21:45:00 EST 2025
Wed Nov 19 08:27:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-5e2fd9d0777bb9574f1641b41811bcd35e55bf1ba2b83e18bc76f0cc313d6bab3
ORCID 0000-0001-9777-128X
0000-0002-1549-0108
0000-0002-6873-3302
0009-0006-9822-2649
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TSMC_2024_3524448
crossref_primary_10_1109_TSMC_2024_3524448
ieee_primary_10843869
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on systems, man, and cybernetics. Systems
PublicationTitleAbbrev TSMC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref21
  doi: 10.1109/TNNLS.2019.2955438
– ident: ref23
  doi: 10.1109/TAES.2022.3217199
– ident: ref33
  doi: 10.1109/TSMC.2020.2975232
– ident: ref29
  doi: 10.1109/TCSI.2022.3201200
– ident: ref35
  doi: 10.1109/TNNLS.2020.3009214
– ident: ref11
  doi: 10.1109/TFUZZ.2024.3355129
– ident: ref4
  doi: 10.1109/TAC.2022.3159543
– ident: ref36
  doi: 10.1109/TFUZZ.2023.3319316
– ident: ref3
  doi: 10.1109/tcsi.2024.3434607
– ident: ref20
  doi: 10.1109/TII.2019.2894282
– ident: ref2
  doi: 10.1109/TSMC.2022.3230703
– ident: ref17
  doi: 10.1109/TCYB.2020.3002108
– ident: ref1
  doi: 10.1109/87.338648
– ident: ref8
  doi: 10.1016/j.ins.2021.05.028
– ident: ref32
  doi: 10.1109/TSMC.2021.3112688
– ident: ref37
  doi: 10.1109/TFUZZ.2020.3037957
– ident: ref19
  doi: 10.1109/TMECH.2022.3192002
– ident: ref26
  doi: 10.1109/TNSE.2023.3330266
– ident: ref28
  doi: 10.1109/TAC.2022.3194100
– ident: ref7
  doi: 10.1109/tnnls.2024.3386881
– ident: ref6
  doi: 10.1002/rnc.6679
– ident: ref13
  doi: 10.1515/9781400874651
– ident: ref27
  doi: 10.1109/TAES.2023.3261299
– ident: ref14
  doi: 10.1109/TFUZZ.2024.3376331
– ident: ref30
  doi: 10.1016/j.ins.2024.120484
– ident: ref18
  doi: 10.1109/TFUZZ.2022.3227993
– ident: ref22
  doi: 10.1109/TAES.2023.3288845
– ident: ref5
  doi: 10.1109/TAES.2021.3101562
– ident: ref9
  doi: 10.1109/TCYB.2021.3049536
– ident: ref34
  doi: 10.1109/TFUZZ.2022.3181463
– ident: ref10
  doi: 10.1109/tsmc.2024.3379356
– ident: ref24
  doi: 10.1109/TAES.2023.3292809
– ident: ref16
  doi: 10.1109/TAES.2023.3341058
– ident: ref25
  doi: 10.1109/TFUZZ.2023.3308573
– ident: ref12
  doi: 10.1109/TAES.2023.3294893
– ident: ref15
  doi: 10.1109/taes.2024.3401668
– ident: ref31
  doi: 10.1109/TFUZZ.2023.3277480
SSID ssj0001286306
Score 2.331366
Snippet This article proposes a prescribed-time fuzzy optimal control approach for flexible-joint (FJ) robot systems utilizing the reinforcement learning (RL)...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 2633
SubjectTerms Actor-critic structure
Backstepping
flexible-joint (FJ) robots
fuzzy logic systems (FLSs)
MIMO
Optimal control
Performance analysis
prescribed-time optimal control
Process control
Program processors
Reinforcement learning
reinforcement learning (RL)
Robots
Title Adaptive Prescribed-Time Optimal Control for Flexible-Joint Robots via Reinforcement Learning
URI https://ieeexplore.ieee.org/document/10843869
Volume 55
WOSCitedRecordID wos001400126700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2168-2232
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001286306
  issn: 2168-2216
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86POjBb3F-kYMnodqkSZocx3CI6JQ5wYuU5qMy0HW4bn-_L2mVXhS8lBISKO-X5n3kvfdD6FwwkqeioFFuOYsYgW2spNGRNJLmqjBcuFAofJcOh_LlRT02xeqhFsY5F5LP3KV_DXf5tjQLHyqDP1yyRAq1ilbTVNTFWq2AihRJ4NKkRAD68GxuMUmsrsZP933wBim7BIuDMU_309JDLWKVoFcGW__8om202RiQuFcjvoNW3HQXbbTaCu6h157NZ_4Ywz7BAo4F7Wzkaz3wAwx_wOp-naCOwWLFA98SU7-76LacTCs8KnVZzfFykuORC21VTYgg4qYT69s-eh5cj_s3UUOjEBnwP6uIO1pYZeM0TbVWPGUFuEhEAy6EaGMT7jjXBdE51TJxRGoD4MXGJCSxQuc6OUCdaTl1hwjnVHED-qxQUjJDFVgHVFiQZ-HtBJF0Ufwt1Mw0PcY91cV7FnyNWGUeh8zjkDU4dNHFz5JZ3WDjr8n7HoPWxFr8R7-MH6N16vl6Q6bNCepUnwt3itbMsprMP8_C_vkCr4nCFQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66CurBt_g2B09CtUnTNDkui8uq6yrrCnuR0jwqC9qKW_39TrJVelHwUkpIoMyXZh6ZmQ-hU85IlvCcBpmJWcAIbGMptAqEFjSTuY659YXC_WQwEOOxvK-L1X0tjLXWJ5_Zc_fq7_JNqT9cqAz-cMEiweU8WnDUWXW5ViOkInjk2TQp4YA_POt7TBLKi9HDbQf8QcrOweZgzBH-NDRRg1rFa5bu2j-_aR2t1iYkbs8w30BztthEK43GglvoqW2yN3eQYZdiAQeDsiZw1R74DoZfYXVnlqKOwWbFXdcUU73Y4LqcFBUelqqspvhzkuGh9Y1VtY8h4roX6_M2euxejjq9oCZSCDR4oFUQW5obacIkSZSSccJycJKIAmQIUdpEsY1jlROVUSUiS4TSAF-odUQiw1Wmoh3UKsrC7iKcURlr0Gi5FIJpKsE-oNyAPHNnKfBoD4XfQk113WXckV28pN7bCGXqcEgdDmmNwx46-1nyNmux8dfkbYdBY-JM_Pu_jJ-gpd7otp_2rwY3B2iZOvZen3dziFrV-4c9Qov6s5pM34_9XvoC-c7FXg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Prescribed-Time+Optimal+Control+for+Flexible-Joint+Robots+via+Reinforcement+Learning&rft.jtitle=IEEE+transactions+on+systems%2C+man%2C+and+cybernetics.+Systems&rft.au=Xie%2C+Shiyu&rft.au=Sun%2C+Wei&rft.au=Sun%2C+Yougang&rft.au=Su%2C+Shun-Feng&rft.date=2025-04-01&rft.pub=IEEE&rft.issn=2168-2216&rft.volume=55&rft.issue=4&rft.spage=2633&rft.epage=2643&rft_id=info:doi/10.1109%2FTSMC.2024.3524448&rft.externalDocID=10843869
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2216&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2216&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2216&client=summon