Adaptive Prescribed-Time Optimal Control for Flexible-Joint Robots via Reinforcement Learning
This article proposes a prescribed-time fuzzy optimal control approach for flexible-joint (FJ) robot systems utilizing the reinforcement learning (RL) strategy. The uniqueness of this method lies in its ability to ensure optimal tracking performance for n-link flexible joint robots within the prescr...
Uložené v:
| Vydané v: | IEEE transactions on systems, man, and cybernetics. Systems Ročník 55; číslo 4; s. 2633 - 2643 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.04.2025
|
| Predmet: | |
| ISSN: | 2168-2216, 2168-2232 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This article proposes a prescribed-time fuzzy optimal control approach for flexible-joint (FJ) robot systems utilizing the reinforcement learning (RL) strategy. The uniqueness of this method lies in its ability to ensure optimal tracking performance for n-link flexible joint robots within the prescribed-time frame, while the actor and critic fuzzy logic system effectively approximate the optimal cost and evaluates system performance. First, the optimal controllers with the auxiliary compensation term are constructed by utilizing the online approximation of the modified performance index function and RL actor-critic structure. The designed controller can deal with unknown structure impacts and avoid model identification. Besides, in designing the prescribed-time scale function, the introduced constant term not only prevents singularity but also allows flexible setting of constraint regions. The proposed scheme is theoretically verified to satisfy the Bellman optimality principle and ensure the tracking error converges to the desired zone within the prescribed time. Finally, the practicability of the designed control scheme is further demonstrated by the 2-link FJ robot simulation example. |
|---|---|
| AbstractList | This article proposes a prescribed-time fuzzy optimal control approach for flexible-joint (FJ) robot systems utilizing the reinforcement learning (RL) strategy. The uniqueness of this method lies in its ability to ensure optimal tracking performance for n-link flexible joint robots within the prescribed-time frame, while the actor and critic fuzzy logic system effectively approximate the optimal cost and evaluates system performance. First, the optimal controllers with the auxiliary compensation term are constructed by utilizing the online approximation of the modified performance index function and RL actor-critic structure. The designed controller can deal with unknown structure impacts and avoid model identification. Besides, in designing the prescribed-time scale function, the introduced constant term not only prevents singularity but also allows flexible setting of constraint regions. The proposed scheme is theoretically verified to satisfy the Bellman optimality principle and ensure the tracking error converges to the desired zone within the prescribed time. Finally, the practicability of the designed control scheme is further demonstrated by the 2-link FJ robot simulation example. |
| Author | Sun, Wei Sun, Yougang Su, Shun-Feng Xie, Shiyu |
| Author_xml | – sequence: 1 givenname: Shiyu orcidid: 0009-0006-9822-2649 surname: Xie fullname: Xie, Shiyu email: xieshy2188@126.com organization: School of Mathematics Science, Liaocheng University, Liaocheng, China – sequence: 2 givenname: Wei orcidid: 0000-0002-6873-3302 surname: Sun fullname: Sun, Wei email: sunw8617@163.com organization: School of Mathematics Science, Liaocheng University, Liaocheng, China – sequence: 3 givenname: Yougang orcidid: 0000-0002-1549-0108 surname: Sun fullname: Sun, Yougang email: 1989yoga@tongji.edu.cn organization: Institute of Rail Transit, Tongji University, Shanghai, China – sequence: 4 givenname: Shun-Feng orcidid: 0000-0001-9777-128X surname: Su fullname: Su, Shun-Feng email: sfsu@mail.ntust.edu.tw organization: Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan |
| BookMark | eNp9kF9LwzAQwIMoOOc-gOBDvkBnLknT9HEM5x8mkzkfpSTpVSJdM9Iy9NvbsiHig0933N3vuPtdkNMmNEjIFbApAMtvNi9P8ylnXE5FyqWU-oSMOCidcC746U8O6pxM2vaDMQZcK8HUiLzNSrPr_B7pc8TWRW-xTDZ-i3TVl7empvPQdDHUtAqRLmr89LbG5DH4pqPrYEPX0r03dI2-6SccbrFvLNHExjfvl-SsMnWLk2Mck9fF7WZ-nyxXdw_z2TJxQuguSZFXZV6yLMuszdNMVqAkWAkawLpSpJimtgJruNUCQVuXqYo5J0CUyhorxiQ77HUxtG3EqnC-M50fTje-LoAVg6hiEFUMooqjqJ6EP-Qu9m_Hr3-Z6wPjEfHXvJZCq1x8Axfbd10 |
| CODEN | ITSMFE |
| CitedBy_id | crossref_primary_10_1007_s12555_024_0450_y crossref_primary_10_1007_s11071_025_11656_5 |
| Cites_doi | 10.1109/TNNLS.2019.2955438 10.1109/TAES.2022.3217199 10.1109/TSMC.2020.2975232 10.1109/TCSI.2022.3201200 10.1109/TNNLS.2020.3009214 10.1109/TFUZZ.2024.3355129 10.1109/TAC.2022.3159543 10.1109/TFUZZ.2023.3319316 10.1109/tcsi.2024.3434607 10.1109/TII.2019.2894282 10.1109/TSMC.2022.3230703 10.1109/TCYB.2020.3002108 10.1109/87.338648 10.1016/j.ins.2021.05.028 10.1109/TSMC.2021.3112688 10.1109/TFUZZ.2020.3037957 10.1109/TMECH.2022.3192002 10.1109/TNSE.2023.3330266 10.1109/TAC.2022.3194100 10.1109/tnnls.2024.3386881 10.1002/rnc.6679 10.1515/9781400874651 10.1109/TAES.2023.3261299 10.1109/TFUZZ.2024.3376331 10.1016/j.ins.2024.120484 10.1109/TFUZZ.2022.3227993 10.1109/TAES.2023.3288845 10.1109/TAES.2021.3101562 10.1109/TCYB.2021.3049536 10.1109/TFUZZ.2022.3181463 10.1109/tsmc.2024.3379356 10.1109/TAES.2023.3292809 10.1109/TAES.2023.3341058 10.1109/TFUZZ.2023.3308573 10.1109/TAES.2023.3294893 10.1109/taes.2024.3401668 10.1109/TFUZZ.2023.3277480 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TSMC.2024.3524448 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2168-2232 |
| EndPage | 2643 |
| ExternalDocumentID | 10_1109_TSMC_2024_3524448 10843869 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Guangyue Young Scholar Innovation Team of Liaocheng University grantid: LCUGYTD2022-01 – fundername: Outstanding Youth Foundation of Shandong Province grantid: ZR2024YQ033 funderid: 10.13039/501100010035 – fundername: National Natural Science Foundation of China grantid: 62473185 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 6IK 97E AAJGR AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION |
| ID | FETCH-LOGICAL-c338t-5e2fd9d0777bb9574f1641b41811bcd35e55bf1ba2b83e18bc76f0cc313d6bab3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001400126700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-2216 |
| IngestDate | Sat Nov 29 06:50:11 EST 2025 Tue Nov 18 21:45:00 EST 2025 Wed Nov 19 08:27:07 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c338t-5e2fd9d0777bb9574f1641b41811bcd35e55bf1ba2b83e18bc76f0cc313d6bab3 |
| ORCID | 0000-0001-9777-128X 0000-0002-1549-0108 0000-0002-6873-3302 0009-0006-9822-2649 |
| PageCount | 11 |
| ParticipantIDs | crossref_citationtrail_10_1109_TSMC_2024_3524448 crossref_primary_10_1109_TSMC_2024_3524448 ieee_primary_10843869 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-01 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on systems, man, and cybernetics. Systems |
| PublicationTitleAbbrev | TSMC |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref21 doi: 10.1109/TNNLS.2019.2955438 – ident: ref23 doi: 10.1109/TAES.2022.3217199 – ident: ref33 doi: 10.1109/TSMC.2020.2975232 – ident: ref29 doi: 10.1109/TCSI.2022.3201200 – ident: ref35 doi: 10.1109/TNNLS.2020.3009214 – ident: ref11 doi: 10.1109/TFUZZ.2024.3355129 – ident: ref4 doi: 10.1109/TAC.2022.3159543 – ident: ref36 doi: 10.1109/TFUZZ.2023.3319316 – ident: ref3 doi: 10.1109/tcsi.2024.3434607 – ident: ref20 doi: 10.1109/TII.2019.2894282 – ident: ref2 doi: 10.1109/TSMC.2022.3230703 – ident: ref17 doi: 10.1109/TCYB.2020.3002108 – ident: ref1 doi: 10.1109/87.338648 – ident: ref8 doi: 10.1016/j.ins.2021.05.028 – ident: ref32 doi: 10.1109/TSMC.2021.3112688 – ident: ref37 doi: 10.1109/TFUZZ.2020.3037957 – ident: ref19 doi: 10.1109/TMECH.2022.3192002 – ident: ref26 doi: 10.1109/TNSE.2023.3330266 – ident: ref28 doi: 10.1109/TAC.2022.3194100 – ident: ref7 doi: 10.1109/tnnls.2024.3386881 – ident: ref6 doi: 10.1002/rnc.6679 – ident: ref13 doi: 10.1515/9781400874651 – ident: ref27 doi: 10.1109/TAES.2023.3261299 – ident: ref14 doi: 10.1109/TFUZZ.2024.3376331 – ident: ref30 doi: 10.1016/j.ins.2024.120484 – ident: ref18 doi: 10.1109/TFUZZ.2022.3227993 – ident: ref22 doi: 10.1109/TAES.2023.3288845 – ident: ref5 doi: 10.1109/TAES.2021.3101562 – ident: ref9 doi: 10.1109/TCYB.2021.3049536 – ident: ref34 doi: 10.1109/TFUZZ.2022.3181463 – ident: ref10 doi: 10.1109/tsmc.2024.3379356 – ident: ref24 doi: 10.1109/TAES.2023.3292809 – ident: ref16 doi: 10.1109/TAES.2023.3341058 – ident: ref25 doi: 10.1109/TFUZZ.2023.3308573 – ident: ref12 doi: 10.1109/TAES.2023.3294893 – ident: ref15 doi: 10.1109/taes.2024.3401668 – ident: ref31 doi: 10.1109/TFUZZ.2023.3277480 |
| SSID | ssj0001286306 |
| Score | 2.331366 |
| Snippet | This article proposes a prescribed-time fuzzy optimal control approach for flexible-joint (FJ) robot systems utilizing the reinforcement learning (RL)... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 2633 |
| SubjectTerms | Actor-critic structure Backstepping flexible-joint (FJ) robots fuzzy logic systems (FLSs) MIMO Optimal control Performance analysis prescribed-time optimal control Process control Program processors Reinforcement learning reinforcement learning (RL) Robots |
| Title | Adaptive Prescribed-Time Optimal Control for Flexible-Joint Robots via Reinforcement Learning |
| URI | https://ieeexplore.ieee.org/document/10843869 |
| Volume | 55 |
| WOSCitedRecordID | wos001400126700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 2168-2232 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001286306 issn: 2168-2216 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86POjBb3F-kYMnodqkSZocx3CI6JQ5wYuU5qMy0HW4bn-_L2mVXhS8lBISKO-X5n3kvfdD6FwwkqeioFFuOYsYgW2spNGRNJLmqjBcuFAofJcOh_LlRT02xeqhFsY5F5LP3KV_DXf5tjQLHyqDP1yyRAq1ilbTVNTFWq2AihRJ4NKkRAD68GxuMUmsrsZP933wBim7BIuDMU_309JDLWKVoFcGW__8om202RiQuFcjvoNW3HQXbbTaCu6h157NZ_4Ywz7BAo4F7Wzkaz3wAwx_wOp-naCOwWLFA98SU7-76LacTCs8KnVZzfFykuORC21VTYgg4qYT69s-eh5cj_s3UUOjEBnwP6uIO1pYZeM0TbVWPGUFuEhEAy6EaGMT7jjXBdE51TJxRGoD4MXGJCSxQuc6OUCdaTl1hwjnVHED-qxQUjJDFVgHVFiQZ-HtBJF0Ufwt1Mw0PcY91cV7FnyNWGUeh8zjkDU4dNHFz5JZ3WDjr8n7HoPWxFr8R7-MH6N16vl6Q6bNCepUnwt3itbMsprMP8_C_vkCr4nCFQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66CurBt_g2B09CtUnTNDkui8uq6yrrCnuR0jwqC9qKW_39TrJVelHwUkpIoMyXZh6ZmQ-hU85IlvCcBpmJWcAIbGMptAqEFjSTuY659YXC_WQwEOOxvK-L1X0tjLXWJ5_Zc_fq7_JNqT9cqAz-cMEiweU8WnDUWXW5ViOkInjk2TQp4YA_POt7TBLKi9HDbQf8QcrOweZgzBH-NDRRg1rFa5bu2j-_aR2t1iYkbs8w30BztthEK43GglvoqW2yN3eQYZdiAQeDsiZw1R74DoZfYXVnlqKOwWbFXdcUU73Y4LqcFBUelqqspvhzkuGh9Y1VtY8h4roX6_M2euxejjq9oCZSCDR4oFUQW5obacIkSZSSccJycJKIAmQIUdpEsY1jlROVUSUiS4TSAF-odUQiw1Wmoh3UKsrC7iKcURlr0Gi5FIJpKsE-oNyAPHNnKfBoD4XfQk113WXckV28pN7bCGXqcEgdDmmNwx46-1nyNmux8dfkbYdBY-JM_Pu_jJ-gpd7otp_2rwY3B2iZOvZen3dziFrV-4c9Qov6s5pM34_9XvoC-c7FXg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Prescribed-Time+Optimal+Control+for+Flexible-Joint+Robots+via+Reinforcement+Learning&rft.jtitle=IEEE+transactions+on+systems%2C+man%2C+and+cybernetics.+Systems&rft.au=Xie%2C+Shiyu&rft.au=Sun%2C+Wei&rft.au=Sun%2C+Yougang&rft.au=Su%2C+Shun-Feng&rft.date=2025-04-01&rft.pub=IEEE&rft.issn=2168-2216&rft.volume=55&rft.issue=4&rft.spage=2633&rft.epage=2643&rft_id=info:doi/10.1109%2FTSMC.2024.3524448&rft.externalDocID=10843869 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2216&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2216&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2216&client=summon |