Superconvergence Results for Weakly Singular Fredholm-Hammerstein Integral Equations

In this article, we consider the multi-Galerkin method for solving the Fredholm-Hammerstein integral equations with weakly singular kernels, using piecewise polynomial bases. We show that multi-Galerkin method has order of convergence for the algebraic kernel, whereas for logarithmic kernel, it conv...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical functional analysis and optimization Ročník 40; číslo 5; s. 548 - 570
Hlavní autoři: Mandal, Moumita, Nelakanti, Gnaneshwar
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Taylor & Francis 04.04.2019
Taylor & Francis Ltd
Témata:
ISSN:0163-0563, 1532-2467
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this article, we consider the multi-Galerkin method for solving the Fredholm-Hammerstein integral equations with weakly singular kernels, using piecewise polynomial bases. We show that multi-Galerkin method has order of convergence for the algebraic kernel, whereas for logarithmic kernel, it converges with the order in uniform norm, where h is the norm of the partition and r is the smoothness of the solution. We also discuss the iterated multi-Galerkin method. We prove that iterated multi-Galerkin method has order of convergence for the algebraic kernel and for logarithmic kernel, it has order of convergence of order in uniform norm. Numerical examples are given to illustrate the theoretical results.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0163-0563
1532-2467
DOI:10.1080/01630563.2018.1561468