Superconvergence Results for Weakly Singular Fredholm-Hammerstein Integral Equations
In this article, we consider the multi-Galerkin method for solving the Fredholm-Hammerstein integral equations with weakly singular kernels, using piecewise polynomial bases. We show that multi-Galerkin method has order of convergence for the algebraic kernel, whereas for logarithmic kernel, it conv...
Uloženo v:
| Vydáno v: | Numerical functional analysis and optimization Ročník 40; číslo 5; s. 548 - 570 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Abingdon
Taylor & Francis
04.04.2019
Taylor & Francis Ltd |
| Témata: | |
| ISSN: | 0163-0563, 1532-2467 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this article, we consider the multi-Galerkin method for solving the Fredholm-Hammerstein integral equations with weakly singular kernels, using piecewise polynomial bases. We show that multi-Galerkin method has order of convergence
for the algebraic kernel, whereas for logarithmic kernel, it converges with the order
in uniform norm, where h is the norm of the partition and r is the smoothness of the solution. We also discuss the iterated multi-Galerkin method. We prove that iterated multi-Galerkin method has order of convergence
for the algebraic kernel and for logarithmic kernel, it has order of convergence of order
in uniform norm. Numerical examples are given to illustrate the theoretical results. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0163-0563 1532-2467 |
| DOI: | 10.1080/01630563.2018.1561468 |