A nonmonotone scaled conjugate gradient algorithm for large-scale unconstrained optimization
This paper proposes a nonmonotone scaled conjugate gradient algorithm for solving large-scale unconstrained optimization problems, which combines the idea of scaled memoryless Broyden-Fletcher-Goldfarb-Shanno preconditioned conjugate gradient method with the nonmonotone technique. An attractive prop...
Uloženo v:
| Vydáno v: | International journal of computer mathematics Ročník 95; číslo 11; s. 2212 - 2228 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Abingdon
Taylor & Francis
02.11.2018
Taylor & Francis Ltd |
| Témata: | |
| ISSN: | 0020-7160, 1029-0265 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper proposes a nonmonotone scaled conjugate gradient algorithm for solving large-scale unconstrained optimization problems, which combines the idea of scaled memoryless Broyden-Fletcher-Goldfarb-Shanno preconditioned conjugate gradient method with the nonmonotone technique. An attractive property of the proposed method is that the search direction always provides sufficient descent step at each iteration. This property is independent of the line search used. Under appropriate assumptions, the method is proven to possess global convergence for nonconvex smooth functions, and R-linear convergence for strongly convex functions. Preliminary numerical results and related comparisons show the efficiency of the proposed method in practical computation. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0020-7160 1029-0265 |
| DOI: | 10.1080/00207160.2017.1368498 |