A nonmonotone scaled conjugate gradient algorithm for large-scale unconstrained optimization

This paper proposes a nonmonotone scaled conjugate gradient algorithm for solving large-scale unconstrained optimization problems, which combines the idea of scaled memoryless Broyden-Fletcher-Goldfarb-Shanno preconditioned conjugate gradient method with the nonmonotone technique. An attractive prop...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of computer mathematics Ročník 95; číslo 11; s. 2212 - 2228
Hlavní autori: Ou, Yigui, Zhou, Xin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Abingdon Taylor & Francis 02.11.2018
Taylor & Francis Ltd
Predmet:
ISSN:0020-7160, 1029-0265
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper proposes a nonmonotone scaled conjugate gradient algorithm for solving large-scale unconstrained optimization problems, which combines the idea of scaled memoryless Broyden-Fletcher-Goldfarb-Shanno preconditioned conjugate gradient method with the nonmonotone technique. An attractive property of the proposed method is that the search direction always provides sufficient descent step at each iteration. This property is independent of the line search used. Under appropriate assumptions, the method is proven to possess global convergence for nonconvex smooth functions, and R-linear convergence for strongly convex functions. Preliminary numerical results and related comparisons show the efficiency of the proposed method in practical computation.
AbstractList This paper proposes a nonmonotone scaled conjugate gradient algorithm for solving large-scale unconstrained optimization problems, which combines the idea of scaled memoryless Broyden-Fletcher-Goldfarb-Shanno preconditioned conjugate gradient method with the nonmonotone technique. An attractive property of the proposed method is that the search direction always provides sufficient descent step at each iteration. This property is independent of the line search used. Under appropriate assumptions, the method is proven to possess global convergence for nonconvex smooth functions, and R-linear convergence for strongly convex functions. Preliminary numerical results and related comparisons show the efficiency of the proposed method in practical computation.
Author Ou, Yigui
Zhou, Xin
Author_xml – sequence: 1
  givenname: Yigui
  surname: Ou
  fullname: Ou, Yigui
  email: ouyigui@tom.com
  organization: Department of Applied Mathematics, Hainan University
– sequence: 2
  givenname: Xin
  surname: Zhou
  fullname: Zhou, Xin
  organization: Department of Applied Mathematics, Hainan University
BookMark eNqFkE1LAzEQhoMoWKs_QVjwvDXZbLJZvFjELyh40ZsQptmkpuwmNUkR_fVmrV486Gkuz_vOzHOE9p13GqFTgmcEC3yOcYUbwvGswqSZEcpF3Yo9NCG4aktccbaPJiNTjtAhOopxjTEWbcMn6Hle5LbBO59yaREV9LorlHfr7QqSLlYBOqtdKqBf-WDTy1AYH4oewkqXX3SxdRmPKYB1Oeo3yQ72A5L17hgdGOijPvmeU_R0c_14dVcuHm7vr-aLUlEqUsmW0LQd4xTMUnNuWtPUhHWVMKSmFAuoeI3bpRKVEcCWCkijRNcyUhvWdryhU3S2690E_7rVMcm13waXV8oq_yk4qxuaqYsdpYKPMWgjlU1fd46395JgOeqUPzrlqFN-68xp9iu9CXaA8P5v7nKXsy6LG-DNh76TCd57H0wAp2yU9O-KT4YSjx0
CitedBy_id crossref_primary_10_3390_math11102264
crossref_primary_10_1109_ACCESS_2020_2992340
Cites_doi 10.1016/j.camwa.2007.08.038
10.1007/s101070100263
10.1023/A:1013653923062
10.1080/00207160.2015.1009903
10.1007/BF00939608
10.1016/j.apm.2012.03.005
10.1016/j.amc.2005.08.027
10.1016/S0377-0427(00)00540-9
10.1137/0715085
10.1007/s11425-007-0072-x
10.1007/s00245-001-0003-0
10.1137/S106482759427021X
10.1145/1132973.1132979
10.2140/pjm.1966.16.1
10.1137/S1052623403428208
10.1016/j.cam.2007.12.011
10.1145/200979.201043
10.1007/s10589-007-9055-7
10.1137/0723046
10.1016/j.ejor.2009.11.030
10.1016/j.amc.2009.05.009
10.1023/A:1021898630001
10.1137/100813026
10.1016/j.cam.2015.06.022
10.1016/j.amc.2010.06.047
10.1007/s10288-013-0233-4
10.1093/imanum/11.3.325
10.1093/imanum/8.1.141
ContentType Journal Article
Copyright 2017 Informa UK Limited, trading as Taylor & Francis Group 2017
2017 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2017 Informa UK Limited, trading as Taylor & Francis Group 2017
– notice: 2017 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/00207160.2017.1368498
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1029-0265
EndPage 2228
ExternalDocumentID 10_1080_00207160_2017_1368498
1368498
Genre Article
GrantInformation_xml – fundername: NNSF of China
  grantid: 11261015
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: NSF of Hainan Province
  grantid: 2016CXTD004; 111001; 117014
GroupedDBID -~X
.4S
.7F
.DC
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABUFD
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACNCT
ACTIO
ACUHS
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AI.
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EAP
EBS
EDO
EJD
EMK
EPL
EST
ESX
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
MK~
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TUS
TWF
UPT
UT5
UU3
VH1
WH7
ZGOLN
~S~
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c338t-5ba79d563afbe66f9f7415d28f143308a26409bc82f8a5bca17c8d9514f59d673
IEDL.DBID TFW
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000441950200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-7160
IngestDate Wed Aug 13 07:28:29 EDT 2025
Tue Nov 18 21:18:10 EST 2025
Sat Nov 29 02:21:38 EST 2025
Mon Oct 20 23:50:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-5ba79d563afbe66f9f7415d28f143308a26409bc82f8a5bca17c8d9514f59d673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2089865473
PQPubID 52924
PageCount 17
ParticipantIDs crossref_citationtrail_10_1080_00207160_2017_1368498
crossref_primary_10_1080_00207160_2017_1368498
informaworld_taylorfrancis_310_1080_00207160_2017_1368498
proquest_journals_2089865473
PublicationCentury 2000
PublicationDate 2018-11-02
PublicationDateYYYYMMDD 2018-11-02
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-02
  day: 02
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle International journal of computer mathematics
PublicationYear 2018
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0010
CIT0032
CIT0031
CIT0011
CIT0033
Sun W.Y. (CIT0025) 2006
Hager W.W. (CIT0018) 2006; 2
CIT0014
CIT0013
CIT0016
CIT0015
CIT0017
CIT0019
Dai Y.H. (CIT0012) 2000
Ou Y.G. (CIT0022) 2009; 215
CIT0020
CIT0001
CIT0023
Nocedal J. (CIT0021) 2006
CIT0003
CIT0002
CIT0024
CIT0005
CIT0027
CIT0004
CIT0026
CIT0029
CIT0006
CIT0028
CIT0009
Bertsekas D.P. (CIT0007) 1982
CIT0008
References_xml – volume-title: Numerical Optimization
  year: 2006
  ident: CIT0021
– volume-title: Constrained Optimization and Lagrange Multipier Methods
  year: 1982
  ident: CIT0007
– ident: CIT0017
  doi: 10.1016/j.camwa.2007.08.038
– ident: CIT0014
  doi: 10.1007/s101070100263
– ident: CIT0010
  doi: 10.1023/A:1013653923062
– volume-title: Optimization Theory and Methods: Nonlinear Programming, Springer Optimization and Its Applications, Vol. 1
  year: 2006
  ident: CIT0025
– ident: CIT0004
  doi: 10.1080/00207160.2015.1009903
– ident: CIT0013
  doi: 10.1007/BF00939608
– ident: CIT0028
  doi: 10.1016/j.apm.2012.03.005
– ident: CIT0029
  doi: 10.1016/j.amc.2005.08.027
– ident: CIT0020
  doi: 10.1016/S0377-0427(00)00540-9
– ident: CIT0023
  doi: 10.1137/0715085
– ident: CIT0026
  doi: 10.1007/s11425-007-0072-x
– ident: CIT0008
  doi: 10.1007/s00245-001-0003-0
– ident: CIT0027
  doi: 10.1137/S106482759427021X
– ident: CIT0019
  doi: 10.1145/1132973.1132979
– ident: CIT0003
  doi: 10.2140/pjm.1966.16.1
– volume-title: Nonlinear Conjugate Gradient Methods (in Chinese)
  year: 2000
  ident: CIT0012
– ident: CIT0031
  doi: 10.1137/S1052623403428208
– ident: CIT0033
  doi: 10.1016/j.cam.2007.12.011
– ident: CIT0009
  doi: 10.1145/200979.201043
– ident: CIT0001
  doi: 10.1007/s10589-007-9055-7
– volume: 2
  start-page: 35
  year: 2006
  ident: CIT0018
  publication-title: Pac. J. Optim.
– ident: CIT0016
  doi: 10.1137/0723046
– ident: CIT0002
  doi: 10.1016/j.ejor.2009.11.030
– volume: 215
  start-page: 474
  year: 2009
  ident: CIT0022
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2009.05.009
– ident: CIT0032
  doi: 10.1023/A:1021898630001
– ident: CIT0011
  doi: 10.1137/100813026
– ident: CIT0015
  doi: 10.1016/j.cam.2015.06.022
– ident: CIT0024
  doi: 10.1016/j.amc.2010.06.047
– ident: CIT0005
  doi: 10.1007/s10288-013-0233-4
– ident: CIT0030
  doi: 10.1093/imanum/11.3.325
– ident: CIT0006
  doi: 10.1093/imanum/8.1.141
SSID ssj0008976
Score 2.1488278
Snippet This paper proposes a nonmonotone scaled conjugate gradient algorithm for solving large-scale unconstrained optimization problems, which combines the idea of...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2212
SubjectTerms Algorithms
Conjugate gradient method
Conjugates
Convergence
convergence analysis
Iterative methods
nonmonotone line search
numerical comparisons
Optimization
Queuing theory
scaled conjugate gradient algorithm
Unconstrained optimization
Title A nonmonotone scaled conjugate gradient algorithm for large-scale unconstrained optimization
URI https://www.tandfonline.com/doi/abs/10.1080/00207160.2017.1368498
https://www.proquest.com/docview/2089865473
Volume 95
WOSCitedRecordID wos000441950200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1029-0265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008976
  issn: 0020-7160
  databaseCode: TFW
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SPHjxLVar5OA10u0-khyLWDxI8VCxB2FJspta6UN2t_5-Z7LZYhHpQY8LmZCdTGYmYeb7CLmJkdE4E5IFAdcs0pliilvNekqrmOehMZlD13_kw6EYj-WTryYsfVkl3qFtDRThfDUebqXLpiIOO7ghMCZdLMziWKclIontvhD6kcNgNHhZ-2IhHb0cSjAUaXp4fptlIzptYJf-8NUuAA0O_mHph2TfZ5-0X5vLEdnJF8fkoGF2oP6gn5DXPl0sF2ChS8TqpiVsZJ5RuDq_r_DZjU4KVylWUTWbLItp9Tan8A90hmXlzI2mEC8x9UQGChBdgmea-5bPU_I8uB_dPTDPw8AMXGArFmvFZRYnobI6TxIrLaYhWU9Y0HjYFQqSqq7URvSsULE2KuBGZJC6RTaWWcLDM9KCRefnhEIojK2OtDZcRDrkCqwjjKJurgILc-k2iRr9p8aDlONKZ2mwxjKtNZiiBlOvwTa5XYt91Cgd2wTk981NK_c8YmsukzTcIttpLCH1B76EAUIKR-R88YepL8kefArX69jrkFZVrPIrsms-q2lZXDvT_gJM-_UF
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI5gIMGF8RSDATlwDVrXR5LjhJiGGDsNsQNSlaQND40VbYXfj5220yaEdoBz4yiNHduJ7O8j5DJERuNESOZ5XLNAJ4opbjVrK61CnvrGJA5dv88HAzEaycVeGCyrxDu0LYAinK_Gw42P0VVJHLZwQ2SMWliZxbFQSwRSrJONEGItWvmw-zj3xkI6gjkUYShTdfH8Ns1SfFpCL_3hrV0I6tb_Y_G7ZKdMQGmnsJg9spZO9km9Ineg5Vk_IE8dOskmYKQZwnXTGegyTSjcnt8-8eWNPk9dsVhO1fg5m77mL-8UfoKOsbKcudEUQiZmn0hCAaIZOKf3suvzkDx0b4bXPVZSMTADd9ichVpxmYSRr6xOo8hKi5lI0hYW8i2_JRTkVS2pjWhboUJtlMeNSCB7C2wok4j7R6QGi06PCYVoGFodaG24CLTPFRiIHwStVHkW5tINElQKiE2JU44rHcfeHM602MEYdzAud7BBruZiHwVQxyoBuajdOHcvJLagM4n9FbLNyhTi8szPYICQwnE5n_xh6guy1Rve9-P-7eDulGzDJ-FaH9tNUsunn-kZ2TRf-etseu7s_Bvclvkw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA6-EC--xUfVHLxGut1HkqOoRVFKDxU9CEseG63UVtrV3-9MNlsUkR70vJkhO5nMI3wzQ8hJihONrZAsirhmibaKKe40aymtUl7ExljfXf-Wdzri4UF2A5pwEmCVmEO7qlGEt9V4ud-sqxFxWMENjjFrIjCLI05LJFLMk0UInTPMv3rt-6kxFtLPl0MShjR1Ec9vbL65p2_NS38Ya--B2mv_sPd1shrCT3pW6csGmSuGm2StHu1Aw03fIo9ndDgagoqOsFk3ncBJFpZC7vzyju9u9GnsoWIlVYOn0bhfPr9S-Ac6QFw586spOEyMPXEEBZCOwDS9hprPbXLXvuydX7EwiIEZyGBLlmrFpU2zWDldZJmTDuMQ2xIOoq24KRREVU2pjWg5oVJtVMSNsBC7JS6VNuPxDlmATRe7hIIvTJ1OtDZcJDrmCtQjTpJmoSIHvPQeSWr55yZ0KcedDvJo2sy0kmCOEsyDBPfI6ZTsrWrTMYtAfj3cvPTvI64aZpLHM2gbtSbk4cZPYIGQwk9y3v8D62Oy3L1o57fXnZsDsgJfhK97bDXIQjl-Lw7Jkvko-5PxkdfyT-mV9-E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+nonmonotone+scaled+conjugate+gradient+algorithm+for+large-scale+unconstrained+optimization&rft.jtitle=International+journal+of+computer+mathematics&rft.au=Ou%2C+Yigui&rft.au=Zhou%2C+Xin&rft.date=2018-11-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0020-7160&rft.eissn=1029-0265&rft.volume=95&rft.issue=11&rft.spage=2212&rft_id=info:doi/10.1080%2F00207160.2017.1368498&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7160&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7160&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7160&client=summon