Spark-based Parallel OS-ELM Algorithm Application for Short-term Load Forecasting for Massive User Data

The data type and quantity of user load data show an exponential growth, so that the traditional load forecasting methods can hardly meet the load forecasting requirements of massive users. Aiming at this problem, a parallel OS-ELM short-term load forecasting model based on Spark is proposed in this...

Full description

Saved in:
Bibliographic Details
Published in:Electric power components and systems Vol. 48; no. 6-7; pp. 603 - 614
Main Authors: Li, Yuancheng, Yang, Rongyan, Guo, Panpan
Format: Journal Article
Language:English
Published: Philadelphia Taylor & Francis 06.08.2020
Taylor & Francis Ltd
Subjects:
ISSN:1532-5008, 1532-5016
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The data type and quantity of user load data show an exponential growth, so that the traditional load forecasting methods can hardly meet the load forecasting requirements of massive users. Aiming at this problem, a parallel OS-ELM short-term load forecasting model based on Spark is proposed in this article. By analyzing the characteristics of the Spark framework and the MapReduce framework, the Spark big data processing framework is determined as the basic framework for processing massive user load data, and a parallel K-means load clustering model based on Spark is designed. The on-line sequential learning machine OS-ELM makes the hidden layer data of computing each incremental training dataset mutually independent, therefore, a Spark-based parallel OS-ELM (SBPOS-ELM) algorithm is put forward. The proposed model is applied under the smart electricity big data environment and the training samples are selected using the incremental training dataset to make a short-term prediction of the millions of users' smart meter electricity load, which verifies the feasibility and effectiveness of the proposed model. At last, comparing with other commonly used short-term load forecasting algorithms, the experimental results show that SBPOS-ELM algorithm has higher accuracy and operation efficiency.
AbstractList The data type and quantity of user load data show an exponential growth, so that the traditional load forecasting methods can hardly meet the load forecasting requirements of massive users. Aiming at this problem, a parallel OS-ELM short-term load forecasting model based on Spark is proposed in this article. By analyzing the characteristics of the Spark framework and the MapReduce framework, the Spark big data processing framework is determined as the basic framework for processing massive user load data, and a parallel K-means load clustering model based on Spark is designed. The on-line sequential learning machine OS-ELM makes the hidden layer data of computing each incremental training dataset mutually independent, therefore, a Spark-based parallel OS-ELM (SBPOS-ELM) algorithm is put forward. The proposed model is applied under the smart electricity big data environment and the training samples are selected using the incremental training dataset to make a short-term prediction of the millions of users' smart meter electricity load, which verifies the feasibility and effectiveness of the proposed model. At last, comparing with other commonly used short-term load forecasting algorithms, the experimental results show that SBPOS-ELM algorithm has higher accuracy and operation efficiency.
Author Yang, Rongyan
Li, Yuancheng
Guo, Panpan
Author_xml – sequence: 1
  givenname: Yuancheng
  surname: Li
  fullname: Li, Yuancheng
  organization: School of Control and Computer Engineering, North China Electric Power University
– sequence: 2
  givenname: Rongyan
  surname: Yang
  fullname: Yang, Rongyan
  organization: School of Control and Computer Engineering, North China Electric Power University
– sequence: 3
  givenname: Panpan
  surname: Guo
  fullname: Guo, Panpan
  organization: School of Control and Computer Engineering, North China Electric Power University
BookMark eNqFkE1P3DAQhq2KSgXKT6hkqeeAP-LYUS9d8dFWWkSlhbM1SezF1BuHsWnFvyfL0h440NOMZt53Pp4Dsjem0RHyibNjzgw74UoKxZg5FkzMJd1KI8U7sr-tV4rxZu9fzswHcpDzHWNctK3YJ-vVBPir6iC7gf4EhBhdpFer6nx5SRdxnTCU2w1dTFMMPZSQRuoT0tVtwlIVhxu6TDDQi4Suh1zCuH7uX0LO4bejN9khPYMCH8l7DzG7o5d4SG4uzq9Pv1fLq28_ThfLqpfSlEq12nSyHTpfK8WMbDj0xrdOK-GHplMDzFd37dAo6aT2xnS6032reK2V8VzLQ_J5N3fCdP_gcrF36QHHeaUVdS2N0KxuZtWXnarHlDM6b_tQnr8rCCFazuyWrP1L1m7J2heys1u9ck8YNoCP__V93fnCODPawJ-EcbAFHmNCjzD2IVv59ogn8sCQUQ
CitedBy_id crossref_primary_10_3390_en18010176
crossref_primary_10_1016_j_apenergy_2021_117798
crossref_primary_10_1155_2022_2171553
crossref_primary_10_1007_s11227_022_04659_1
crossref_primary_10_1080_15325008_2023_2185832
crossref_primary_10_1002_cpe_6967
crossref_primary_10_1155_2021_9669868
crossref_primary_10_1016_j_jestch_2021_02_016
crossref_primary_10_3389_fenrg_2024_1453039
Cites_doi 10.1109/NAPS.2014.6965453
10.1109/TSG.2013.2277171
10.1007/s11708-016-0393-y
10.1109/TSG.2016.2547964
10.1109/ACCESS.2017.2759509
10.1109/TSG.2017.2697440
10.1109/TIA.2016.2558563
10.1109/TSG.2014.2364233
10.1007/s00202-017-0587-2
10.1017/S1466252319000136
ContentType Journal Article
Copyright 2020 Taylor & Francis Group, LLC 2020
2020 Taylor & Francis Group, LLC
Copyright_xml – notice: 2020 Taylor & Francis Group, LLC 2020
– notice: 2020 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
DOI 10.1080/15325008.2020.1793832
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1532-5016
EndPage 614
ExternalDocumentID 10_1080_15325008_2020_1793832
1793832
Genre Research Article
GroupedDBID .7F
.QJ
0BK
0R~
29G
2DF
30N
4.4
5GY
5VS
8VB
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
FYQZC
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
MS~
NA5
NX~
O9-
PQQKQ
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
ZL0
~S~
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c338t-5978b39dbf45508361ac8f9e752fd6b5da992b9d653e37f88b7b7c9514758f173
IEDL.DBID TFW
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000556479900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1532-5008
IngestDate Wed Aug 13 04:27:22 EDT 2025
Sat Nov 29 05:38:03 EST 2025
Tue Nov 18 21:09:52 EST 2025
Mon Oct 20 23:48:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6-7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-5978b39dbf45508361ac8f9e752fd6b5da992b9d653e37f88b7b7c9514758f173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2443827046
PQPubID 52905
PageCount 12
ParticipantIDs crossref_citationtrail_10_1080_15325008_2020_1793832
proquest_journals_2443827046
crossref_primary_10_1080_15325008_2020_1793832
informaworld_taylorfrancis_310_1080_15325008_2020_1793832
PublicationCentury 2000
PublicationDate 2020-08-06
PublicationDateYYYYMMDD 2020-08-06
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-06
  day: 06
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Electric power components and systems
PublicationYear 2020
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Ben Z. (CIT0005) 2015; 35
CIT0010
Xiangrong Z. U. (CIT0013) 2016; 36
CIT0021
CIT0020
CIT0012
Gang X. (CIT0003) 2017; 41
Dewen W. (CIT0011) 2015; 35
Huixia Y. (CIT0014) 2017; 45
Baoyi W. (CIT0004) 2016; 36
CIT0002
CIT0016
CIT0015
CIT0007
Ekonomou L. (CIT0009) 2016; 1
CIT0018
Yundong G. (CIT0001) 2015; 30
CIT0006
CIT0017
CIT0008
CIT0019
References_xml – ident: CIT0020
– volume: 36
  start-page: 134
  issue: 10
  year: 2016
  ident: CIT0013
  publication-title: Electr. Power Autom. Equip.
– ident: CIT0010
– volume: 35
  start-page: 152
  issue: 11
  year: 2015
  ident: CIT0005
  publication-title: Electr. Power Autom. Equip.
– volume: 35
  start-page: 527
  issue: 03
  year: 2015
  ident: CIT0011
  publication-title: Proc. CSEE
– ident: CIT0006
  doi: 10.1109/NAPS.2014.6965453
– ident: CIT0015
  doi: 10.1109/TSG.2013.2277171
– ident: CIT0007
  doi: 10.1007/s11708-016-0393-y
– volume: 1
  start-page: 64
  year: 2016
  ident: CIT0009
  publication-title: Int. J. Power Syst.
– ident: CIT0021
  doi: 10.1109/TSG.2016.2547964
– ident: CIT0017
  doi: 10.1109/ACCESS.2017.2759509
– ident: CIT0018
  doi: 10.1109/TSG.2017.2697440
– volume: 30
  start-page: 110
  issue: 23
  year: 2015
  ident: CIT0001
  publication-title: Trans. China Electrotech. Soc.
– ident: CIT0002
  doi: 10.1109/TIA.2016.2558563
– ident: CIT0019
– ident: CIT0012
  doi: 10.1109/TSG.2014.2364233
– volume: 36
  start-page: 117
  issue: 01
  year: 2016
  ident: CIT0004
  publication-title: Electr. Power Autom. Equip.
– ident: CIT0008
  doi: 10.1007/s00202-017-0587-2
– volume: 45
  start-page: 62
  issue: 15
  year: 2017
  ident: CIT0014
  publication-title: Power Syst. Prot. Control
– ident: CIT0016
  doi: 10.1017/S1466252319000136
– volume: 41
  start-page: 1964
  issue: 06
  year: 2017
  ident: CIT0003
  publication-title: Power Syst. Technol.
SSID ssj0012992
Score 2.2672882
Snippet The data type and quantity of user load data show an exponential growth, so that the traditional load forecasting methods can hardly meet the load forecasting...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 603
SubjectTerms Algorithms
Big Data
Clustering
Data processing
Datasets
Electrical loads
Electricity consumption
Electricity meters
Forecasting
K-means algorithm
Machine learning
massive user load data
Mathematical models
parallel OS-ELM algorithm
short-term load forecast
Smart grid
Spark
Training
User requirements
Title Spark-based Parallel OS-ELM Algorithm Application for Short-term Load Forecasting for Massive User Data
URI https://www.tandfonline.com/doi/abs/10.1080/15325008.2020.1793832
https://www.proquest.com/docview/2443827046
Volume 48
WOSCitedRecordID wos000556479900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1532-5016
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012992
  issn: 1532-5008
  databaseCode: TFW
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT8IwFG-M8aAHv40omh68Vrd1W7sjUYgHQBIgclu6rgUiAtmmf7-v-0CIMRx0t215zfL663u_t76-h9CdtG2hFXWI5NonLpea8MhhRAWepYAQSCrdvNkE63b5aBT0ymzCtEyrNDG0LgpF5LbaLG4RpVVG3AMsUnDclknMcuARIAxgCVYYmL3B-KD1utpHAGPrFBVTIeQCkeoMz2-jbHinjdqlP2x17oBaR__w6cfosGSfuFHA5QTtqPkpOlirSXiGxv2lSN6I8W4x7onE9FqZ4Zc-abY7uDEbL5JpNnnHje-Nbwyfj_sT4PHE2HncXogYm5afUqQmqTp_3wGSDoYVDwHy-Elk4hwNW83B4zMpuzEQCWFsRiDy4BEN4kibg9Cc-raA-Q0U8xwd-5EXC9B1FMS-RxVlmvOIRUwCgXMhJNE2oxdod76Yq0uEAwAOFVbMpAsXCFHlK8WBjIIfBQJYQ241C6EsS5Wbjhmz0C4rmlZ6DI0ew1KPNXS_ElsWtTq2CQTrUxxm-U8SXXQ0CekW2XqFh7Bc9mkIXIlyh1muf_WHoa_RvrnN0wz9OtrNkg91g_bkZzZNk9sc4F-KY_Oe
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI5gIAEH3ojHgBy4BtambdLjBEwgtoG0TXCL0jTZJsaGusLvx-kDhhDaAXps5CiyHftz4tgInSnHkUZTlyhuAuJxZQiPXEZ06Nc0AAJFlZc1m2DtNn96Cmffwti0ShtDm7xQRGar7ea2h9FlStwF7FLw3DWbmeXCL1Ax0MtFtOSDr7Vpfd3G4-dNAphbN6-ZCkEX0JSveH6b5pt_-la99Ie1zlxQY-M_Fr-J1gsAiuu5xmyhBT3eRmszZQl3UL_zKpNnYh1cjB9kYtutjPB9h1w3W7g-6k-SYTp4wfWvu28M68edAUB5Yk09bk5kjG3XTyWnNq86G28BTgfbinug9fhKpnIX9RrX3csbUjRkIAoi2ZRA8MEjGsaRsW-hOQ0cCSIONfNdEweRH0tgdhTGgU81ZYbziEVMAYbzICoxDqN7qDKejPU-wiHoDpW1mCkPPiCiOtCaAx4FVwoY8AB5pRiEKqqV26YZI-EURU1LPgrLR1Hw8QCdf5K95uU65hGEszIWaXZOYvKmJoLOoa2WCiGKnT8VAJcod1nNCw7_MPUpWrnptpqiedu-O0KrdijLOgyqqJImb_oYLav3dDhNTjJt_wDyAPe_
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELWgIAQHdsSOD1wNTZzGzrGirUC0pVJB9GY5jt0iSlslge9nnKWAEOIAOSYayxo_zxKP3yB0rhxHGk1dorjxiceVITx0GdFBraohIFBUeVmzCdbt8sEg6BXVhElRVmlzaJMTRWS22m7uWWTKirhL2KTguKu2MMuFV4AwgOUiWsrIsQDS963H-UECWFs3p0yFnAtkyks8Pw3zxT19IS_9ZqwzD9Ta-Ie5b6L1IvzE9RwvW2hBT7bR2idSwh007M9k_Eyse4twT8a22coY3_VJs93B9fFwGj-loxdc_zj5xjB93B9BIE-socftqYyw7fmpZGKrqrPvHYjSwbLiB8A8bshU7qKHVvP-6poU7RiIgjw2JZB68JAGUWjsTWhOfUfCAgea1VwT-WEtkqDrMIj8GtWUGc5DFjIFEZwHOYlxGN1Dlcl0ovcRDgA5VFYjpjx4QIhqX2sO0Sg4UogAD5BXroJQBVe5bZkxFk5BaVrqUVg9ikKPB-hiLjbLyTp-Ewg-L7FIs78kJm9pIugvssclHkSx7xMBwRLlLqt6_uEfhj5DK71GS7RvurdHaNV-yUoO_WNUSeNXfYKW1Vv6lMSnGdbfAdT59mM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spark-based+Parallel+OS-ELM+Algorithm+Application+for+Short-term+Load+Forecasting+for+Massive+User+Data&rft.jtitle=Electric+power+components+and+systems&rft.au=Li%2C+Yuancheng&rft.au=Yang%2C+Rongyan&rft.au=Guo%2C+Panpan&rft.date=2020-08-06&rft.issn=1532-5008&rft.eissn=1532-5016&rft.volume=48&rft.issue=6-7&rft.spage=603&rft.epage=614&rft_id=info:doi/10.1080%2F15325008.2020.1793832&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_15325008_2020_1793832
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-5008&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-5008&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-5008&client=summon