Spark-based Parallel OS-ELM Algorithm Application for Short-term Load Forecasting for Massive User Data
The data type and quantity of user load data show an exponential growth, so that the traditional load forecasting methods can hardly meet the load forecasting requirements of massive users. Aiming at this problem, a parallel OS-ELM short-term load forecasting model based on Spark is proposed in this...
Saved in:
| Published in: | Electric power components and systems Vol. 48; no. 6-7; pp. 603 - 614 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Philadelphia
Taylor & Francis
06.08.2020
Taylor & Francis Ltd |
| Subjects: | |
| ISSN: | 1532-5008, 1532-5016 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The data type and quantity of user load data show an exponential growth, so that the traditional load forecasting methods can hardly meet the load forecasting requirements of massive users. Aiming at this problem, a parallel OS-ELM short-term load forecasting model based on Spark is proposed in this article. By analyzing the characteristics of the Spark framework and the MapReduce framework, the Spark big data processing framework is determined as the basic framework for processing massive user load data, and a parallel K-means load clustering model based on Spark is designed. The on-line sequential learning machine OS-ELM makes the hidden layer data of computing each incremental training dataset mutually independent, therefore, a Spark-based parallel OS-ELM (SBPOS-ELM) algorithm is put forward. The proposed model is applied under the smart electricity big data environment and the training samples are selected using the incremental training dataset to make a short-term prediction of the millions of users' smart meter electricity load, which verifies the feasibility and effectiveness of the proposed model. At last, comparing with other commonly used short-term load forecasting algorithms, the experimental results show that SBPOS-ELM algorithm has higher accuracy and operation efficiency. |
|---|---|
| AbstractList | The data type and quantity of user load data show an exponential growth, so that the traditional load forecasting methods can hardly meet the load forecasting requirements of massive users. Aiming at this problem, a parallel OS-ELM short-term load forecasting model based on Spark is proposed in this article. By analyzing the characteristics of the Spark framework and the MapReduce framework, the Spark big data processing framework is determined as the basic framework for processing massive user load data, and a parallel K-means load clustering model based on Spark is designed. The on-line sequential learning machine OS-ELM makes the hidden layer data of computing each incremental training dataset mutually independent, therefore, a Spark-based parallel OS-ELM (SBPOS-ELM) algorithm is put forward. The proposed model is applied under the smart electricity big data environment and the training samples are selected using the incremental training dataset to make a short-term prediction of the millions of users' smart meter electricity load, which verifies the feasibility and effectiveness of the proposed model. At last, comparing with other commonly used short-term load forecasting algorithms, the experimental results show that SBPOS-ELM algorithm has higher accuracy and operation efficiency. |
| Author | Yang, Rongyan Li, Yuancheng Guo, Panpan |
| Author_xml | – sequence: 1 givenname: Yuancheng surname: Li fullname: Li, Yuancheng organization: School of Control and Computer Engineering, North China Electric Power University – sequence: 2 givenname: Rongyan surname: Yang fullname: Yang, Rongyan organization: School of Control and Computer Engineering, North China Electric Power University – sequence: 3 givenname: Panpan surname: Guo fullname: Guo, Panpan organization: School of Control and Computer Engineering, North China Electric Power University |
| BookMark | eNqFkE1P3DAQhq2KSgXKT6hkqeeAP-LYUS9d8dFWWkSlhbM1SezF1BuHsWnFvyfL0h440NOMZt53Pp4Dsjem0RHyibNjzgw74UoKxZg5FkzMJd1KI8U7sr-tV4rxZu9fzswHcpDzHWNctK3YJ-vVBPir6iC7gf4EhBhdpFer6nx5SRdxnTCU2w1dTFMMPZSQRuoT0tVtwlIVhxu6TDDQi4Suh1zCuH7uX0LO4bejN9khPYMCH8l7DzG7o5d4SG4uzq9Pv1fLq28_ThfLqpfSlEq12nSyHTpfK8WMbDj0xrdOK-GHplMDzFd37dAo6aT2xnS6032reK2V8VzLQ_J5N3fCdP_gcrF36QHHeaUVdS2N0KxuZtWXnarHlDM6b_tQnr8rCCFazuyWrP1L1m7J2heys1u9ck8YNoCP__V93fnCODPawJ-EcbAFHmNCjzD2IVv59ogn8sCQUQ |
| CitedBy_id | crossref_primary_10_3390_en18010176 crossref_primary_10_1016_j_apenergy_2021_117798 crossref_primary_10_1155_2022_2171553 crossref_primary_10_1007_s11227_022_04659_1 crossref_primary_10_1080_15325008_2023_2185832 crossref_primary_10_1002_cpe_6967 crossref_primary_10_1155_2021_9669868 crossref_primary_10_1016_j_jestch_2021_02_016 crossref_primary_10_3389_fenrg_2024_1453039 |
| Cites_doi | 10.1109/NAPS.2014.6965453 10.1109/TSG.2013.2277171 10.1007/s11708-016-0393-y 10.1109/TSG.2016.2547964 10.1109/ACCESS.2017.2759509 10.1109/TSG.2017.2697440 10.1109/TIA.2016.2558563 10.1109/TSG.2014.2364233 10.1007/s00202-017-0587-2 10.1017/S1466252319000136 |
| ContentType | Journal Article |
| Copyright | 2020 Taylor & Francis Group, LLC 2020 2020 Taylor & Francis Group, LLC |
| Copyright_xml | – notice: 2020 Taylor & Francis Group, LLC 2020 – notice: 2020 Taylor & Francis Group, LLC |
| DBID | AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
| DOI | 10.1080/15325008.2020.1793832 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1532-5016 |
| EndPage | 614 |
| ExternalDocumentID | 10_1080_15325008_2020_1793832 1793832 |
| Genre | Research Article |
| GroupedDBID | .7F .QJ 0BK 0R~ 29G 2DF 30N 4.4 5GY 5VS 8VB AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS E~A E~B FYQZC GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z MS~ NA5 NX~ O9- PQQKQ QWB RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ZL0 ~S~ AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
| ID | FETCH-LOGICAL-c338t-5978b39dbf45508361ac8f9e752fd6b5da992b9d653e37f88b7b7c9514758f173 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000556479900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1532-5008 |
| IngestDate | Wed Aug 13 04:27:22 EDT 2025 Sat Nov 29 05:38:03 EST 2025 Tue Nov 18 21:09:52 EST 2025 Mon Oct 20 23:48:20 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6-7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c338t-5978b39dbf45508361ac8f9e752fd6b5da992b9d653e37f88b7b7c9514758f173 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2443827046 |
| PQPubID | 52905 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1080_15325008_2020_1793832 proquest_journals_2443827046 crossref_primary_10_1080_15325008_2020_1793832 informaworld_taylorfrancis_310_1080_15325008_2020_1793832 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-08-06 |
| PublicationDateYYYYMMDD | 2020-08-06 |
| PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-06 day: 06 |
| PublicationDecade | 2020 |
| PublicationPlace | Philadelphia |
| PublicationPlace_xml | – name: Philadelphia |
| PublicationTitle | Electric power components and systems |
| PublicationYear | 2020 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | Ben Z. (CIT0005) 2015; 35 CIT0010 Xiangrong Z. U. (CIT0013) 2016; 36 CIT0021 CIT0020 CIT0012 Gang X. (CIT0003) 2017; 41 Dewen W. (CIT0011) 2015; 35 Huixia Y. (CIT0014) 2017; 45 Baoyi W. (CIT0004) 2016; 36 CIT0002 CIT0016 CIT0015 CIT0007 Ekonomou L. (CIT0009) 2016; 1 CIT0018 Yundong G. (CIT0001) 2015; 30 CIT0006 CIT0017 CIT0008 CIT0019 |
| References_xml | – ident: CIT0020 – volume: 36 start-page: 134 issue: 10 year: 2016 ident: CIT0013 publication-title: Electr. Power Autom. Equip. – ident: CIT0010 – volume: 35 start-page: 152 issue: 11 year: 2015 ident: CIT0005 publication-title: Electr. Power Autom. Equip. – volume: 35 start-page: 527 issue: 03 year: 2015 ident: CIT0011 publication-title: Proc. CSEE – ident: CIT0006 doi: 10.1109/NAPS.2014.6965453 – ident: CIT0015 doi: 10.1109/TSG.2013.2277171 – ident: CIT0007 doi: 10.1007/s11708-016-0393-y – volume: 1 start-page: 64 year: 2016 ident: CIT0009 publication-title: Int. J. Power Syst. – ident: CIT0021 doi: 10.1109/TSG.2016.2547964 – ident: CIT0017 doi: 10.1109/ACCESS.2017.2759509 – ident: CIT0018 doi: 10.1109/TSG.2017.2697440 – volume: 30 start-page: 110 issue: 23 year: 2015 ident: CIT0001 publication-title: Trans. China Electrotech. Soc. – ident: CIT0002 doi: 10.1109/TIA.2016.2558563 – ident: CIT0019 – ident: CIT0012 doi: 10.1109/TSG.2014.2364233 – volume: 36 start-page: 117 issue: 01 year: 2016 ident: CIT0004 publication-title: Electr. Power Autom. Equip. – ident: CIT0008 doi: 10.1007/s00202-017-0587-2 – volume: 45 start-page: 62 issue: 15 year: 2017 ident: CIT0014 publication-title: Power Syst. Prot. Control – ident: CIT0016 doi: 10.1017/S1466252319000136 – volume: 41 start-page: 1964 issue: 06 year: 2017 ident: CIT0003 publication-title: Power Syst. Technol. |
| SSID | ssj0012992 |
| Score | 2.2672882 |
| Snippet | The data type and quantity of user load data show an exponential growth, so that the traditional load forecasting methods can hardly meet the load forecasting... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 603 |
| SubjectTerms | Algorithms Big Data Clustering Data processing Datasets Electrical loads Electricity consumption Electricity meters Forecasting K-means algorithm Machine learning massive user load data Mathematical models parallel OS-ELM algorithm short-term load forecast Smart grid Spark Training User requirements |
| Title | Spark-based Parallel OS-ELM Algorithm Application for Short-term Load Forecasting for Massive User Data |
| URI | https://www.tandfonline.com/doi/abs/10.1080/15325008.2020.1793832 https://www.proquest.com/docview/2443827046 |
| Volume | 48 |
| WOSCitedRecordID | wos000556479900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1532-5016 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012992 issn: 1532-5008 databaseCode: TFW dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT8IwFG-M8aAHv40omh68Vrd1W7sjUYgHQBIgclu6rgUiAtmmf7-v-0CIMRx0t215zfL663u_t76-h9CdtG2hFXWI5NonLpea8MhhRAWepYAQSCrdvNkE63b5aBT0ymzCtEyrNDG0LgpF5LbaLG4RpVVG3AMsUnDclknMcuARIAxgCVYYmL3B-KD1utpHAGPrFBVTIeQCkeoMz2-jbHinjdqlP2x17oBaR__w6cfosGSfuFHA5QTtqPkpOlirSXiGxv2lSN6I8W4x7onE9FqZ4Zc-abY7uDEbL5JpNnnHje-Nbwyfj_sT4PHE2HncXogYm5afUqQmqTp_3wGSDoYVDwHy-Elk4hwNW83B4zMpuzEQCWFsRiDy4BEN4kibg9Cc-raA-Q0U8xwd-5EXC9B1FMS-RxVlmvOIRUwCgXMhJNE2oxdod76Yq0uEAwAOFVbMpAsXCFHlK8WBjIIfBQJYQ241C6EsS5Wbjhmz0C4rmlZ6DI0ew1KPNXS_ElsWtTq2CQTrUxxm-U8SXXQ0CekW2XqFh7Bc9mkIXIlyh1muf_WHoa_RvrnN0wz9OtrNkg91g_bkZzZNk9sc4F-KY_Oe |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI5gIAEH3ojHgBy4BtambdLjBEwgtoG0TXCL0jTZJsaGusLvx-kDhhDaAXps5CiyHftz4tgInSnHkUZTlyhuAuJxZQiPXEZ06Nc0AAJFlZc1m2DtNn96Cmffwti0ShtDm7xQRGar7ea2h9FlStwF7FLw3DWbmeXCL1Ax0MtFtOSDr7Vpfd3G4-dNAphbN6-ZCkEX0JSveH6b5pt_-la99Ie1zlxQY-M_Fr-J1gsAiuu5xmyhBT3eRmszZQl3UL_zKpNnYh1cjB9kYtutjPB9h1w3W7g-6k-SYTp4wfWvu28M68edAUB5Yk09bk5kjG3XTyWnNq86G28BTgfbinug9fhKpnIX9RrX3csbUjRkIAoi2ZRA8MEjGsaRsW-hOQ0cCSIONfNdEweRH0tgdhTGgU81ZYbziEVMAYbzICoxDqN7qDKejPU-wiHoDpW1mCkPPiCiOtCaAx4FVwoY8AB5pRiEKqqV26YZI-EURU1LPgrLR1Hw8QCdf5K95uU65hGEszIWaXZOYvKmJoLOoa2WCiGKnT8VAJcod1nNCw7_MPUpWrnptpqiedu-O0KrdijLOgyqqJImb_oYLav3dDhNTjJt_wDyAPe_ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELWgIAQHdsSOD1wNTZzGzrGirUC0pVJB9GY5jt0iSlslge9nnKWAEOIAOSYayxo_zxKP3yB0rhxHGk1dorjxiceVITx0GdFBraohIFBUeVmzCdbt8sEg6BXVhElRVmlzaJMTRWS22m7uWWTKirhL2KTguKu2MMuFV4AwgOUiWsrIsQDS963H-UECWFs3p0yFnAtkyks8Pw3zxT19IS_9ZqwzD9Ta-Ie5b6L1IvzE9RwvW2hBT7bR2idSwh007M9k_Eyse4twT8a22coY3_VJs93B9fFwGj-loxdc_zj5xjB93B9BIE-socftqYyw7fmpZGKrqrPvHYjSwbLiB8A8bshU7qKHVvP-6poU7RiIgjw2JZB68JAGUWjsTWhOfUfCAgea1VwT-WEtkqDrMIj8GtWUGc5DFjIFEZwHOYlxGN1Dlcl0ovcRDgA5VFYjpjx4QIhqX2sO0Sg4UogAD5BXroJQBVe5bZkxFk5BaVrqUVg9ikKPB-hiLjbLyTp-Ewg-L7FIs78kJm9pIugvssclHkSx7xMBwRLlLqt6_uEfhj5DK71GS7RvurdHaNV-yUoO_WNUSeNXfYKW1Vv6lMSnGdbfAdT59mM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spark-based+Parallel+OS-ELM+Algorithm+Application+for+Short-term+Load+Forecasting+for+Massive+User+Data&rft.jtitle=Electric+power+components+and+systems&rft.au=Li%2C+Yuancheng&rft.au=Yang%2C+Rongyan&rft.au=Guo%2C+Panpan&rft.date=2020-08-06&rft.issn=1532-5008&rft.eissn=1532-5016&rft.volume=48&rft.issue=6-7&rft.spage=603&rft.epage=614&rft_id=info:doi/10.1080%2F15325008.2020.1793832&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_15325008_2020_1793832 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-5008&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-5008&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-5008&client=summon |