Online Tensor Robust Principal Component Analysis

Online robust principal component analysis (RPCA) algorithms recursively decompose incoming data into low-rank and sparse components. However, they operate on data vectors and cannot directly be applied to higher-order data arrays (e.g. video frames). In this paper, we propose a new online robust PC...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE access Ročník 10; s. 69354 - 69363
Hlavní autori: Salut, Mohammad M., Anderson, David V.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2169-3536, 2169-3536
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Online robust principal component analysis (RPCA) algorithms recursively decompose incoming data into low-rank and sparse components. However, they operate on data vectors and cannot directly be applied to higher-order data arrays (e.g. video frames). In this paper, we propose a new online robust PCA algorithm that preserves the multi-dimensional structure of data. Our algorithm is based on the recently proposed tensor singular value decomposition (T-SVD). We develop a convex optimization-based approach to recover the sparse component; and subsequently, update the low-rank component using incremental T-SVD. We propose an efficient tensor convolutional extension to the fast iterative shrinkage thresholding algorithm (FISTA) to produce a fast algorithm to solve this optimization problem. We demonstrate tensor-RPCA with the application of background foreground separation in a video stream. The foreground component is modeled as a sparse signal. The background component is modeled as a gradually changing low-rank subspace. Extensive experiments on real-world videos are presented and results demonstrate the effectiveness of our online tensor robust PCA.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2022.3186364