Online Tensor Robust Principal Component Analysis
Online robust principal component analysis (RPCA) algorithms recursively decompose incoming data into low-rank and sparse components. However, they operate on data vectors and cannot directly be applied to higher-order data arrays (e.g. video frames). In this paper, we propose a new online robust PC...
Uložené v:
| Vydané v: | IEEE access Ročník 10; s. 69354 - 69363 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Online robust principal component analysis (RPCA) algorithms recursively decompose incoming data into low-rank and sparse components. However, they operate on data vectors and cannot directly be applied to higher-order data arrays (e.g. video frames). In this paper, we propose a new online robust PCA algorithm that preserves the multi-dimensional structure of data. Our algorithm is based on the recently proposed tensor singular value decomposition (T-SVD). We develop a convex optimization-based approach to recover the sparse component; and subsequently, update the low-rank component using incremental T-SVD. We propose an efficient tensor convolutional extension to the fast iterative shrinkage thresholding algorithm (FISTA) to produce a fast algorithm to solve this optimization problem. We demonstrate tensor-RPCA with the application of background foreground separation in a video stream. The foreground component is modeled as a sparse signal. The background component is modeled as a gradually changing low-rank subspace. Extensive experiments on real-world videos are presented and results demonstrate the effectiveness of our online tensor robust PCA. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2169-3536 2169-3536 |
| DOI: | 10.1109/ACCESS.2022.3186364 |