Solving a continuous multifacility location problem by DC algorithms
The paper presents a new approach to solve multifacility location problems, which is based on mixed integer programming and algorithms for minimizing differences of convex (DC) functions. The main challenges for solving the multifacility location problems under consideration come from their intrinsi...
Gespeichert in:
| Veröffentlicht in: | Optimization methods & software Jg. 37; H. 1; S. 338 - 360 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Abingdon
Taylor & Francis
02.01.2022
Taylor & Francis Ltd |
| Schlagworte: | |
| ISSN: | 1055-6788, 1029-4937 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | The paper presents a new approach to solve multifacility location problems, which is based on mixed integer programming and algorithms for minimizing differences of convex (DC) functions. The main challenges for solving the multifacility location problems under consideration come from their intrinsic discrete, nonconvex, and nondifferentiable nature. We provide a reformulation of these problems as those of continuous optimization and then develop a new DC type algorithm for their solutions involving Nesterov's smoothing. The proposed algorithm is computationally implemented via MATLAB numerical tests on both artificial and real data sets. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1055-6788 1029-4937 |
| DOI: | 10.1080/10556788.2020.1771335 |