A data-driven adaptive algorithm and decision support design of multisensory information fusion for prognostics and health management applications
Multisensory systems play a critical role in prognostics and health management (PHM), and utilise the information from multi-device synchronous measurements for fault diagnosis and predictive maintenance. But it is not suitable for specific systems with limited bandwidth and energy reservoirs since...
Uložené v:
| Vydané v: | Journal of engineering design Ročník 34; číslo 2; s. 158 - 179 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Abingdon
Taylor & Francis
01.02.2023
Taylor & Francis Ltd |
| Predmet: | |
| ISSN: | 0954-4828, 1466-1837 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Multisensory systems play a critical role in prognostics and health management (PHM), and utilise the information from multi-device synchronous measurements for fault diagnosis and predictive maintenance. But it is not suitable for specific systems with limited bandwidth and energy reservoirs since the increased sophistication of measurement devices requires more computation and power resources. This research explores a data-driven analytical framework for multisensory system analysis and design in PHM. The proposed framework provides the optimal subset of reliable sensors to make trade-offs between accuracy demands and system constraints. The integration definition for function modelling method is adopted for modelling and functional analysis of the proposed framework. An adaptive signal conversion algorithm is designed to process the data from all reliable sensors in the system. The convolutional neural network with residual learning is built for automatic feature extraction. Combined with the evaluation rules and expert knowledge, performance analyses are obtained, including qualitative results, fault diagnosis, and the optimal sensor combination. An open-source bearing dataset of the multisensory system with five measurements is conducted to demonstrate the effectiveness and feasibility of the proposed framework. |
|---|---|
| AbstractList | Multisensory systems play a critical role in prognostics and health management (PHM), and utilise the information from multi-device synchronous measurements for fault diagnosis and predictive maintenance. But it is not suitable for specific systems with limited bandwidth and energy reservoirs since the increased sophistication of measurement devices requires more computation and power resources. This research explores a data-driven analytical framework for multisensory system analysis and design in PHM. The proposed framework provides the optimal subset of reliable sensors to make trade-offs between accuracy demands and system constraints. The integration definition for function modelling method is adopted for modelling and functional analysis of the proposed framework. An adaptive signal conversion algorithm is designed to process the data from all reliable sensors in the system. The convolutional neural network with residual learning is built for automatic feature extraction. Combined with the evaluation rules and expert knowledge, performance analyses are obtained, including qualitative results, fault diagnosis, and the optimal sensor combination. An open-source bearing dataset of the multisensory system with five measurements is conducted to demonstrate the effectiveness and feasibility of the proposed framework. |
| Author | Park, Hyung Wook Xie, Tingli Huang, Xufeng Choi, Seung-Kyum Kim, Heung Soo |
| Author_xml | – sequence: 1 givenname: Tingli orcidid: 0000-0001-9505-9838 surname: Xie fullname: Xie, Tingli organization: Georgia Institute of Technology – sequence: 2 givenname: Xufeng orcidid: 0000-0003-4666-4569 surname: Huang fullname: Huang, Xufeng organization: Huazhong University of Science & Technology – sequence: 3 givenname: Hyung Wook surname: Park fullname: Park, Hyung Wook organization: Ulsan National Institute of Science and Technology (UNIST) – sequence: 4 givenname: Heung Soo surname: Kim fullname: Kim, Heung Soo organization: Dongguk University – sequence: 5 givenname: Seung-Kyum orcidid: 0000-0002-1201-7825 surname: Choi fullname: Choi, Seung-Kyum email: schoi@me.gatech.edu organization: Georgia Institute of Technology |
| BookMark | eNqFkctqHDEQRUWwIePHJxgEWfdEj1Y_yMbGxHHA4E2yFmU9ZmS6pbakdpjfyBdHPTPeeBGvqijuuVXUPUMnPniD0BUla0o68pX0oq471q0ZYXzNaNv2vP2EVrRumop2vD1Bq0VTLaLP6CylZ0IKyMQK_b3BGjJUOrpX4zFomHLpMAybEF3ejhi8xtool1zwOM3TFGIug-Q2HgeLx3nILhmfQtxh522II-RFauc9UQZ4imHjQ8pOpb3d1sCQt3gEDxszGp8xTNPg1B5MF-jUwpDM5bGeo99333_d3lcPjz9-3t48VIrzLleiIUQ0tKeWaqKfDFeaW8Fb29VKlE9QaAVwMFrVLTOs78lTTak1xtZccVbzc_Tl4FvOe5lNyvI5zNGXlZK1XS8EZw0tqm8HlYohpWisVC7vD80R3CApkUsI8i0EuYQgjyEUWryjp-hGiLsPuesDd_zonxAHLTPshhBtBF_ikPz_Fv8Ar4yj6w |
| CitedBy_id | crossref_primary_10_1016_j_ijmecsci_2023_108905 crossref_primary_10_1088_1361_6501_ad099b crossref_primary_10_1080_09544828_2023_2247858 crossref_primary_10_1080_09544828_2024_2377069 crossref_primary_10_1080_09544828_2024_2326111 crossref_primary_10_1002_cjce_25746 crossref_primary_10_1080_09544828_2024_2355758 |
| Cites_doi | 10.1016/j.jmsy.2020.07.021 10.1016/j.aei.2022.101725 10.1109/TNNLS.2021.3071292 10.1080/09544828.2022.2106123 10.1016/j.ijepes.2021.107828 10.1109/TIM.19 10.1109/TTE.2022.3161988 10.1038/s41467-022-31747-w 10.1016/j.ymssp.2020.106861 10.1109/TII.2021.3112504 10.1016/j.ymssp.2020.107050 10.1016/j.knosys.2022.109846 10.1016/j.knosys.2021.107652 10.1016/j.neucom.2017.06.070 10.1109/TII.2022.3190394 10.1016/j.neunet.2021.01.026 10.1007/s10489-021-02555-4 10.1016/j.ress.2022.108969 10.1016/j.ymssp.2019.106587 10.1007/s10462-020-09825-6 10.1109/JPROC.2017.2761740 10.1109/ACCESS.2019.2907131 10.1007/s10462-020-09910-w 10.1007/s10845-022-02020-0 10.1080/09544828.2022.2164440 10.1109/TII.2020.2979467 10.1016/j.aei.2021.101286 10.1080/00207721.2021.2005178 10.1016/j.ress.2021.108179 10.1177/1729881420911257 10.1007/s00170-017-1474-8 10.1080/09544820601010981 10.1016/j.jmsy.2021.05.011 10.1016/j.ress.2022.108900 10.1016/j.knosys.2022.110212 10.1109/JSEN.2020.3000257 10.1109/TIE.2022.3169709 10.1016/j.inffus.2018.10.005 10.1016/j.ress.2021.108119 10.1016/j.measurement.2022.111536 10.1016/j.measurement.2020.107929 10.1109/TII.2021.3102017 10.1016/j.knosys.2021.106873 10.1016/j.knosys.2020.106230 10.1016/j.measurement.2020.108718 10.1016/j.ymssp.2021.108668 10.1109/TSMC.2022.3151185 10.1109/TMECH.2017.2728371 10.1016/j.asoc.2018.03.043 10.1016/j.isatra.2022.06.047 10.1109/SENSORS47125.2020.9278616 10.1016/j.jmsy.2021.03.005 10.1016/j.ymssp.2015.04.021 10.1109/JIOT.2022.3163606 10.1016/j.sigpro.2013.04.015 10.5772/67145 10.1016/j.ress.2021.108063 10.1115/1.4051749 10.1016/j.ymssp.2021.108068 10.1080/09544828.2022.2150448 |
| ContentType | Journal Article |
| Copyright | 2023 Informa UK Limited, trading as Taylor & Francis Group 2023 2023 Informa UK Limited, trading as Taylor & Francis Group |
| Copyright_xml | – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023 – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group |
| DBID | AAYXX CITATION 7TB 8FD FR3 |
| DOI | 10.1080/09544828.2023.2177937 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database |
| DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1466-1837 |
| EndPage | 179 |
| ExternalDocumentID | 10_1080_09544828_2023_2177937 2177937 |
| Genre | Research Article |
| GroupedDBID | -~X .7F .QJ 0BK 0R~ 29K 2DF 30N 4.4 5GY 5VS 8VB AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFO ACGFS ACGOD ACIWK ACTIO ACUHS ADCVX ADGTB ADMLS ADXPE AEGXH AEISY AEMOZ AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AHQJS AIAGR AIJEM AIYEW AJWEG AKBVH AKOOK AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 D-I DGEBU DKSSO DU5 EAP EAS EBE EBR EBS EBU EMI EMK EPL EST ESX E~A E~B GTTXZ H13 HF~ HZ~ H~P I-F IPNFZ J.P K1G KYCEM LJTGL M4Z MK~ NA5 NX~ O9- P2P QWB RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TH9 TNC TTHFI TUROJ TUS TWF UT5 UU3 ZGOLN ZL0 ~S~ AAYXX CITATION 7TB 8FD FR3 |
| ID | FETCH-LOGICAL-c338t-560056191f1d0dbe3cd3f537f84c52021a75a3aedc472e2990b411feef43c3243 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000935106200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0954-4828 |
| IngestDate | Wed Aug 13 04:45:27 EDT 2025 Tue Nov 18 22:35:10 EST 2025 Sat Nov 29 05:30:40 EST 2025 Mon Oct 20 23:46:03 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c338t-560056191f1d0dbe3cd3f537f84c52021a75a3aedc472e2990b411feef43c3243 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4666-4569 0000-0001-9505-9838 0000-0002-1201-7825 |
| PQID | 2789553261 |
| PQPubID | 33068 |
| PageCount | 22 |
| ParticipantIDs | crossref_citationtrail_10_1080_09544828_2023_2177937 crossref_primary_10_1080_09544828_2023_2177937 proquest_journals_2789553261 informaworld_taylorfrancis_310_1080_09544828_2023_2177937 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-02-01 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon |
| PublicationTitle | Journal of engineering design |
| PublicationYear | 2023 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | CIT0030 CIT0032 CIT0031 CIT0034 CIT0033 CIT0036 CIT0035 CIT0037 CIT0039 CIT0041 CIT0040 CIT0043 CIT0042 CIT0001 CIT0045 CIT0044 CIT0003 CIT0047 CIT0002 CIT0046 CIT0005 CIT0049 CIT0004 CIT0048 CIT0007 CIT0006 CIT0009 CIT0008 CIT0050 CIT0052 CIT0051 CIT0010 CIT0054 CIT0053 CIT0012 CIT0056 CIT0011 CIT0055 CIT0014 CIT0058 CIT0013 CIT0057 CIT0016 CIT0015 CIT0059 CIT0018 CIT0017 CIT0019 CIT0061 CIT0060 CIT0062 CIT0021 CIT0020 CIT0023 CIT0022 CIT0025 CIT0024 CIT0027 CIT0026 CIT0029 CIT0028 Maas A. L. (CIT0038) 2013; 30 |
| References_xml | – ident: CIT0005 doi: 10.1016/j.jmsy.2020.07.021 – ident: CIT0034 doi: 10.1016/j.aei.2022.101725 – ident: CIT0008 doi: 10.1109/TNNLS.2021.3071292 – ident: CIT0060 doi: 10.1080/09544828.2022.2106123 – ident: CIT0020 doi: 10.1016/j.ijepes.2021.107828 – ident: CIT0016 doi: 10.1109/TIM.19 – ident: CIT0018 doi: 10.1109/TTE.2022.3161988 – ident: CIT0057 doi: 10.1038/s41467-022-31747-w – ident: CIT0004 doi: 10.1016/j.ymssp.2020.106861 – ident: CIT0017 doi: 10.1109/TII.2021.3112504 – ident: CIT0053 doi: 10.1016/j.ymssp.2020.107050 – ident: CIT0036 doi: 10.1016/j.knosys.2022.109846 – ident: CIT0030 doi: 10.1016/j.knosys.2021.107652 – ident: CIT0042 doi: 10.1016/j.neucom.2017.06.070 – ident: CIT0056 doi: 10.1109/TII.2022.3190394 – ident: CIT0002 doi: 10.1016/j.neunet.2021.01.026 – ident: CIT0041 doi: 10.1007/s10489-021-02555-4 – ident: CIT0015 doi: 10.1016/j.ress.2022.108969 – ident: CIT0025 doi: 10.1016/j.ymssp.2019.106587 – ident: CIT0024 doi: 10.1007/s10462-020-09825-6 – ident: CIT0045 doi: 10.1109/JPROC.2017.2761740 – ident: CIT0048 doi: 10.1109/ACCESS.2019.2907131 – ident: CIT0039 doi: 10.1007/s10462-020-09910-w – ident: CIT0040 doi: 10.1007/s10845-022-02020-0 – ident: CIT0003 doi: 10.1080/09544828.2022.2164440 – ident: CIT0033 doi: 10.1109/TII.2020.2979467 – ident: CIT0046 doi: 10.1016/j.aei.2021.101286 – volume: 30 start-page: 3 issue: 1 year: 2013 ident: CIT0038 publication-title: International Conference on Machine Learning – ident: CIT0014 doi: 10.1080/00207721.2021.2005178 – ident: CIT0061 doi: 10.1016/j.ress.2021.108179 – ident: CIT0013 doi: 10.1177/1729881420911257 – ident: CIT0012 doi: 10.1007/s00170-017-1474-8 – ident: CIT0058 doi: 10.1080/09544820601010981 – ident: CIT0027 doi: 10.1016/j.jmsy.2021.05.011 – ident: CIT0054 doi: 10.1016/j.ress.2022.108900 – ident: CIT0006 doi: 10.1016/j.knosys.2022.110212 – ident: CIT0029 doi: 10.1109/JSEN.2020.3000257 – ident: CIT0001 doi: 10.1109/TIE.2022.3169709 – ident: CIT0011 doi: 10.1016/j.inffus.2018.10.005 – ident: CIT0062 doi: 10.1016/j.ress.2021.108119 – ident: CIT0023 doi: 10.1016/j.measurement.2022.111536 – ident: CIT0043 doi: 10.1016/j.measurement.2020.107929 – ident: CIT0052 doi: 10.1109/TII.2021.3102017 – ident: CIT0037 doi: 10.1016/j.knosys.2021.106873 – ident: CIT0021 doi: 10.1016/j.knosys.2020.106230 – ident: CIT0035 doi: 10.1016/j.measurement.2020.108718 – ident: CIT0007 doi: 10.1016/j.ymssp.2021.108668 – ident: CIT0031 doi: 10.1109/TSMC.2022.3151185 – ident: CIT0051 doi: 10.1109/TMECH.2017.2728371 – ident: CIT0050 doi: 10.1016/j.asoc.2018.03.043 – ident: CIT0059 doi: 10.1016/j.isatra.2022.06.047 – ident: CIT0010 doi: 10.1109/SENSORS47125.2020.9278616 – ident: CIT0028 – ident: CIT0049 doi: 10.1016/j.jmsy.2021.03.005 – ident: CIT0044 doi: 10.1016/j.ymssp.2015.04.021 – ident: CIT0009 doi: 10.1109/JIOT.2022.3163606 – ident: CIT0055 doi: 10.1016/j.sigpro.2013.04.015 – ident: CIT0026 doi: 10.5772/67145 – ident: CIT0019 doi: 10.1016/j.ress.2021.108063 – ident: CIT0022 doi: 10.1115/1.4051749 – ident: CIT0032 doi: 10.1016/j.ymssp.2021.108068 – ident: CIT0047 doi: 10.1080/09544828.2022.2150448 |
| SSID | ssj0008025 |
| Score | 2.3471205 |
| Snippet | Multisensory systems play a critical role in prognostics and health management (PHM), and utilise the information from multi-device synchronous measurements... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 158 |
| SubjectTerms | Adaptive algorithms Artificial neural networks Data integration Data-driven adaptive decision support design Fault diagnosis Feature extraction Functional analysis Measuring instruments Multisensor fusion multisensory information fusion Predictive maintenance prognostics and health management Qualitative analysis Sensors Systems analysis |
| Title | A data-driven adaptive algorithm and decision support design of multisensory information fusion for prognostics and health management applications |
| URI | https://www.tandfonline.com/doi/abs/10.1080/09544828.2023.2177937 https://www.proquest.com/docview/2789553261 |
| Volume | 34 |
| WOSCitedRecordID | wos000935106200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis (UCD Library purchased years) customDbUrl: eissn: 1466-1837 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008025 issn: 0954-4828 databaseCode: TFW dateStart: 19900101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQADb0ShIA-sLk2cNMlYISqmiqGIbpHjByC1TZWkSPwNfjF3jlO1QqgDjLF0Tvz6_F38-Y6QW9nvZ3j6woCKcxYoY5gAv4FpbpSIZah4rGyyiWg0iieT5MmpCUsnq0Qf2tSBIixW4-IWWdko4u6AFYBT4aMwy-dd4NQY4w1QGJg9zvHx8GWFxXHPpl1FC4YmzR2e32rZ2J02Ypf-wGq7AQ0P_-HTj8iBY590UE-XY7Kj5ydkfy0m4Sn5GlBUjTJVIA5SocQCEZGK6WtevFdvMwovp8ql5qHlcoEMHgpQCUJzQ61EsQTvOC8-qWsbjj41S2sBBRRVYfPchoi21dW3MelspcWh6wfrZ-R5-DC-f2QucQOT4PFWDFkU8LLEM57qqUxzqbgJeWTiQIbQck9EoeBCKxlEvsYNMQs8z2htAi6B4fFz0prnc31BqEHAiH0N9ekg5DJJwl4_kwJwI_J8HbdJ0AxYKl1Uc0yuMU29Jvip6_IUuzx1Xd4m3ZXZog7rsc0gWZ8NaWX_p5g6-UnKt9h2mqmTOoQoU7yBHIZAnr3LP1R9RfbwsZaRd0irKpb6muzKDxjo4sauhW_ZxAcu |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELXYJODAjigU8IGroYnjJjkiRFUE9FQEN8v1AkhtU6UtEr_BFzPjJFURQhzgFMnRTOJt_MZ-niHkTDebPTx9YQDFOYuMc0yB38Asd0YlWhieGJ9sIu50kqendP4uDNIq0Yd2RaAIb6txcuNmdEWJuwBYAF5FiMyskJ8DqMYgb4tkWcADaX3d1uPMGicNn3gVRRjKVLd4flLzZX36Er30m7X2S1Br8z9-fotslACUXhYjZpss2OEOWZ8LS7hLPi4pEkeZydEUUmXUCI0iVf3nLH-dvAwofJ2aMjsPHU9HCOKhAMkgNHPUsxTH4CBn-TstK4cDgLqpl4ACisSwYeajRHt1xYVMOpjRcej82foeeWhdd6_arMzdwDQ4vROGQAqgWRq4wDRMz3JtuBM8dkmkBdQ8ULFQXFmjozi0uCb2oiBw1rqIawB5fJ8sDbOhPSDUoc1IQgv6bCS4TlPRaPa0AtMRB6FNaiSqekzqMrA55tfoy6CKf1o2ucQml2WT18j5TGxURPb4TSCdHw5y4rdUXJH_RPJfZOvV2JGlkRhLvIQsBODn4PAPqk_Jart7fyfvbjq3R2QNXxWs8jpZmuRTe0xW9Bt0en7iJ8YnYGwLTw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELWgIAQHdsSOD1xdmjhpkiMCKhCo4gCCm-V6AaS2qdIWid_gi5lxnKoVQhzg6miceBu_iZ_fEHKqms0Onr4wgOKcRdpaJiFuYIZbLVMVa55ql2wiabfT5-fs3rMJh55WiTG0LYUinK_GxT3QtmLEnQEqgKAiRGJWyOuAqVHjbZ4sOHEsmNIPraeJM04bLu8qmjC0qS7x_FTNzPY0I176zVm7Hai19g_fvk5WPfyk5-V82SBzpr9JVqZECbfI5zlF2ijTBTpCKrUcoEuksvuSF2-j1x6Fl1Ptc_PQ4XiAEB4KkApCc0sdR3EI4XFefFDfNhx-asfOAgoo0sL6udOIdtWV1zFpb0LGodMn69vksXX1cHHNfOYGpiDkHTGEUQDMssAGuqE7hivNbcwTm0YqhpYHMokll0arKAkN7oidKAisMTbiCiAe3yG1ft43u4Ra9BhpaKA-E8VcZVncaHaUBMeRBKFJ90hUDZhQXtYcs2t0RVCpn_ouF9jlwnf5HqlPzAalrsdvBtn0bBAj90PFltlPBP_F9rCaOsK7iKHAK8hxDOg52P9D1Sdk6f6yJe5u2rcHZBmflJTyQ1IbFWNzRBbVO4x5ceyWxRcErAnz |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data-driven+adaptive+algorithm+and+decision+support+design+of+multisensory+information+fusion+for+prognostics+and+health+management+applications&rft.jtitle=Journal+of+engineering+design&rft.au=Xie%2C+Tingli&rft.au=Huang%2C+Xufeng&rft.au=Park%2C+Hyung+Wook&rft.au=Kim%2C+Heung+Soo&rft.date=2023-02-01&rft.issn=0954-4828&rft.eissn=1466-1837&rft.volume=34&rft.issue=2&rft.spage=158&rft.epage=179&rft_id=info:doi/10.1080%2F09544828.2023.2177937&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_09544828_2023_2177937 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0954-4828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0954-4828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0954-4828&client=summon |