A data-driven adaptive algorithm and decision support design of multisensory information fusion for prognostics and health management applications

Multisensory systems play a critical role in prognostics and health management (PHM), and utilise the information from multi-device synchronous measurements for fault diagnosis and predictive maintenance. But it is not suitable for specific systems with limited bandwidth and energy reservoirs since...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of engineering design Ročník 34; číslo 2; s. 158 - 179
Hlavní autori: Xie, Tingli, Huang, Xufeng, Park, Hyung Wook, Kim, Heung Soo, Choi, Seung-Kyum
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Abingdon Taylor & Francis 01.02.2023
Taylor & Francis Ltd
Predmet:
ISSN:0954-4828, 1466-1837
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Multisensory systems play a critical role in prognostics and health management (PHM), and utilise the information from multi-device synchronous measurements for fault diagnosis and predictive maintenance. But it is not suitable for specific systems with limited bandwidth and energy reservoirs since the increased sophistication of measurement devices requires more computation and power resources. This research explores a data-driven analytical framework for multisensory system analysis and design in PHM. The proposed framework provides the optimal subset of reliable sensors to make trade-offs between accuracy demands and system constraints. The integration definition for function modelling method is adopted for modelling and functional analysis of the proposed framework. An adaptive signal conversion algorithm is designed to process the data from all reliable sensors in the system. The convolutional neural network with residual learning is built for automatic feature extraction. Combined with the evaluation rules and expert knowledge, performance analyses are obtained, including qualitative results, fault diagnosis, and the optimal sensor combination. An open-source bearing dataset of the multisensory system with five measurements is conducted to demonstrate the effectiveness and feasibility of the proposed framework.
AbstractList Multisensory systems play a critical role in prognostics and health management (PHM), and utilise the information from multi-device synchronous measurements for fault diagnosis and predictive maintenance. But it is not suitable for specific systems with limited bandwidth and energy reservoirs since the increased sophistication of measurement devices requires more computation and power resources. This research explores a data-driven analytical framework for multisensory system analysis and design in PHM. The proposed framework provides the optimal subset of reliable sensors to make trade-offs between accuracy demands and system constraints. The integration definition for function modelling method is adopted for modelling and functional analysis of the proposed framework. An adaptive signal conversion algorithm is designed to process the data from all reliable sensors in the system. The convolutional neural network with residual learning is built for automatic feature extraction. Combined with the evaluation rules and expert knowledge, performance analyses are obtained, including qualitative results, fault diagnosis, and the optimal sensor combination. An open-source bearing dataset of the multisensory system with five measurements is conducted to demonstrate the effectiveness and feasibility of the proposed framework.
Author Park, Hyung Wook
Xie, Tingli
Huang, Xufeng
Choi, Seung-Kyum
Kim, Heung Soo
Author_xml – sequence: 1
  givenname: Tingli
  orcidid: 0000-0001-9505-9838
  surname: Xie
  fullname: Xie, Tingli
  organization: Georgia Institute of Technology
– sequence: 2
  givenname: Xufeng
  orcidid: 0000-0003-4666-4569
  surname: Huang
  fullname: Huang, Xufeng
  organization: Huazhong University of Science & Technology
– sequence: 3
  givenname: Hyung Wook
  surname: Park
  fullname: Park, Hyung Wook
  organization: Ulsan National Institute of Science and Technology (UNIST)
– sequence: 4
  givenname: Heung Soo
  surname: Kim
  fullname: Kim, Heung Soo
  organization: Dongguk University
– sequence: 5
  givenname: Seung-Kyum
  orcidid: 0000-0002-1201-7825
  surname: Choi
  fullname: Choi, Seung-Kyum
  email: schoi@me.gatech.edu
  organization: Georgia Institute of Technology
BookMark eNqFkctqHDEQRUWwIePHJxgEWfdEj1Y_yMbGxHHA4E2yFmU9ZmS6pbakdpjfyBdHPTPeeBGvqijuuVXUPUMnPniD0BUla0o68pX0oq471q0ZYXzNaNv2vP2EVrRumop2vD1Bq0VTLaLP6CylZ0IKyMQK_b3BGjJUOrpX4zFomHLpMAybEF3ejhi8xtool1zwOM3TFGIug-Q2HgeLx3nILhmfQtxh522II-RFauc9UQZ4imHjQ8pOpb3d1sCQt3gEDxszGp8xTNPg1B5MF-jUwpDM5bGeo99333_d3lcPjz9-3t48VIrzLleiIUQ0tKeWaqKfDFeaW8Fb29VKlE9QaAVwMFrVLTOs78lTTak1xtZccVbzc_Tl4FvOe5lNyvI5zNGXlZK1XS8EZw0tqm8HlYohpWisVC7vD80R3CApkUsI8i0EuYQgjyEUWryjp-hGiLsPuesDd_zonxAHLTPshhBtBF_ikPz_Fv8Ar4yj6w
CitedBy_id crossref_primary_10_1016_j_ijmecsci_2023_108905
crossref_primary_10_1088_1361_6501_ad099b
crossref_primary_10_1080_09544828_2023_2247858
crossref_primary_10_1080_09544828_2024_2377069
crossref_primary_10_1080_09544828_2024_2326111
crossref_primary_10_1002_cjce_25746
crossref_primary_10_1080_09544828_2024_2355758
Cites_doi 10.1016/j.jmsy.2020.07.021
10.1016/j.aei.2022.101725
10.1109/TNNLS.2021.3071292
10.1080/09544828.2022.2106123
10.1016/j.ijepes.2021.107828
10.1109/TIM.19
10.1109/TTE.2022.3161988
10.1038/s41467-022-31747-w
10.1016/j.ymssp.2020.106861
10.1109/TII.2021.3112504
10.1016/j.ymssp.2020.107050
10.1016/j.knosys.2022.109846
10.1016/j.knosys.2021.107652
10.1016/j.neucom.2017.06.070
10.1109/TII.2022.3190394
10.1016/j.neunet.2021.01.026
10.1007/s10489-021-02555-4
10.1016/j.ress.2022.108969
10.1016/j.ymssp.2019.106587
10.1007/s10462-020-09825-6
10.1109/JPROC.2017.2761740
10.1109/ACCESS.2019.2907131
10.1007/s10462-020-09910-w
10.1007/s10845-022-02020-0
10.1080/09544828.2022.2164440
10.1109/TII.2020.2979467
10.1016/j.aei.2021.101286
10.1080/00207721.2021.2005178
10.1016/j.ress.2021.108179
10.1177/1729881420911257
10.1007/s00170-017-1474-8
10.1080/09544820601010981
10.1016/j.jmsy.2021.05.011
10.1016/j.ress.2022.108900
10.1016/j.knosys.2022.110212
10.1109/JSEN.2020.3000257
10.1109/TIE.2022.3169709
10.1016/j.inffus.2018.10.005
10.1016/j.ress.2021.108119
10.1016/j.measurement.2022.111536
10.1016/j.measurement.2020.107929
10.1109/TII.2021.3102017
10.1016/j.knosys.2021.106873
10.1016/j.knosys.2020.106230
10.1016/j.measurement.2020.108718
10.1016/j.ymssp.2021.108668
10.1109/TSMC.2022.3151185
10.1109/TMECH.2017.2728371
10.1016/j.asoc.2018.03.043
10.1016/j.isatra.2022.06.047
10.1109/SENSORS47125.2020.9278616
10.1016/j.jmsy.2021.03.005
10.1016/j.ymssp.2015.04.021
10.1109/JIOT.2022.3163606
10.1016/j.sigpro.2013.04.015
10.5772/67145
10.1016/j.ress.2021.108063
10.1115/1.4051749
10.1016/j.ymssp.2021.108068
10.1080/09544828.2022.2150448
ContentType Journal Article
Copyright 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
2023 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
– notice: 2023 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7TB
8FD
FR3
DOI 10.1080/09544828.2023.2177937
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1466-1837
EndPage 179
ExternalDocumentID 10_1080_09544828_2023_2177937
2177937
Genre Research Article
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29K
2DF
30N
4.4
5GY
5VS
8VB
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFO
ACGFS
ACGOD
ACIWK
ACTIO
ACUHS
ADCVX
ADGTB
ADMLS
ADXPE
AEGXH
AEISY
AEMOZ
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AHQJS
AIAGR
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
D-I
DGEBU
DKSSO
DU5
EAP
EAS
EBE
EBR
EBS
EBU
EMI
EMK
EPL
EST
ESX
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
I-F
IPNFZ
J.P
K1G
KYCEM
LJTGL
M4Z
MK~
NA5
NX~
O9-
P2P
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TH9
TNC
TTHFI
TUROJ
TUS
TWF
UT5
UU3
ZGOLN
ZL0
~S~
AAYXX
CITATION
7TB
8FD
FR3
ID FETCH-LOGICAL-c338t-560056191f1d0dbe3cd3f537f84c52021a75a3aedc472e2990b411feef43c3243
IEDL.DBID TFW
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000935106200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0954-4828
IngestDate Wed Aug 13 04:45:27 EDT 2025
Tue Nov 18 22:35:10 EST 2025
Sat Nov 29 05:30:40 EST 2025
Mon Oct 20 23:46:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-560056191f1d0dbe3cd3f537f84c52021a75a3aedc472e2990b411feef43c3243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4666-4569
0000-0001-9505-9838
0000-0002-1201-7825
PQID 2789553261
PQPubID 33068
PageCount 22
ParticipantIDs crossref_citationtrail_10_1080_09544828_2023_2177937
crossref_primary_10_1080_09544828_2023_2177937
proquest_journals_2789553261
informaworld_taylorfrancis_310_1080_09544828_2023_2177937
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Journal of engineering design
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0032
CIT0031
CIT0034
CIT0033
CIT0036
CIT0035
CIT0037
CIT0039
CIT0041
CIT0040
CIT0043
CIT0042
CIT0001
CIT0045
CIT0044
CIT0003
CIT0047
CIT0002
CIT0046
CIT0005
CIT0049
CIT0004
CIT0048
CIT0007
CIT0006
CIT0009
CIT0008
CIT0050
CIT0052
CIT0051
CIT0010
CIT0054
CIT0053
CIT0012
CIT0056
CIT0011
CIT0055
CIT0014
CIT0058
CIT0013
CIT0057
CIT0016
CIT0015
CIT0059
CIT0018
CIT0017
CIT0019
CIT0061
CIT0060
CIT0062
CIT0021
CIT0020
CIT0023
CIT0022
CIT0025
CIT0024
CIT0027
CIT0026
CIT0029
CIT0028
Maas A. L. (CIT0038) 2013; 30
References_xml – ident: CIT0005
  doi: 10.1016/j.jmsy.2020.07.021
– ident: CIT0034
  doi: 10.1016/j.aei.2022.101725
– ident: CIT0008
  doi: 10.1109/TNNLS.2021.3071292
– ident: CIT0060
  doi: 10.1080/09544828.2022.2106123
– ident: CIT0020
  doi: 10.1016/j.ijepes.2021.107828
– ident: CIT0016
  doi: 10.1109/TIM.19
– ident: CIT0018
  doi: 10.1109/TTE.2022.3161988
– ident: CIT0057
  doi: 10.1038/s41467-022-31747-w
– ident: CIT0004
  doi: 10.1016/j.ymssp.2020.106861
– ident: CIT0017
  doi: 10.1109/TII.2021.3112504
– ident: CIT0053
  doi: 10.1016/j.ymssp.2020.107050
– ident: CIT0036
  doi: 10.1016/j.knosys.2022.109846
– ident: CIT0030
  doi: 10.1016/j.knosys.2021.107652
– ident: CIT0042
  doi: 10.1016/j.neucom.2017.06.070
– ident: CIT0056
  doi: 10.1109/TII.2022.3190394
– ident: CIT0002
  doi: 10.1016/j.neunet.2021.01.026
– ident: CIT0041
  doi: 10.1007/s10489-021-02555-4
– ident: CIT0015
  doi: 10.1016/j.ress.2022.108969
– ident: CIT0025
  doi: 10.1016/j.ymssp.2019.106587
– ident: CIT0024
  doi: 10.1007/s10462-020-09825-6
– ident: CIT0045
  doi: 10.1109/JPROC.2017.2761740
– ident: CIT0048
  doi: 10.1109/ACCESS.2019.2907131
– ident: CIT0039
  doi: 10.1007/s10462-020-09910-w
– ident: CIT0040
  doi: 10.1007/s10845-022-02020-0
– ident: CIT0003
  doi: 10.1080/09544828.2022.2164440
– ident: CIT0033
  doi: 10.1109/TII.2020.2979467
– ident: CIT0046
  doi: 10.1016/j.aei.2021.101286
– volume: 30
  start-page: 3
  issue: 1
  year: 2013
  ident: CIT0038
  publication-title: International Conference on Machine Learning
– ident: CIT0014
  doi: 10.1080/00207721.2021.2005178
– ident: CIT0061
  doi: 10.1016/j.ress.2021.108179
– ident: CIT0013
  doi: 10.1177/1729881420911257
– ident: CIT0012
  doi: 10.1007/s00170-017-1474-8
– ident: CIT0058
  doi: 10.1080/09544820601010981
– ident: CIT0027
  doi: 10.1016/j.jmsy.2021.05.011
– ident: CIT0054
  doi: 10.1016/j.ress.2022.108900
– ident: CIT0006
  doi: 10.1016/j.knosys.2022.110212
– ident: CIT0029
  doi: 10.1109/JSEN.2020.3000257
– ident: CIT0001
  doi: 10.1109/TIE.2022.3169709
– ident: CIT0011
  doi: 10.1016/j.inffus.2018.10.005
– ident: CIT0062
  doi: 10.1016/j.ress.2021.108119
– ident: CIT0023
  doi: 10.1016/j.measurement.2022.111536
– ident: CIT0043
  doi: 10.1016/j.measurement.2020.107929
– ident: CIT0052
  doi: 10.1109/TII.2021.3102017
– ident: CIT0037
  doi: 10.1016/j.knosys.2021.106873
– ident: CIT0021
  doi: 10.1016/j.knosys.2020.106230
– ident: CIT0035
  doi: 10.1016/j.measurement.2020.108718
– ident: CIT0007
  doi: 10.1016/j.ymssp.2021.108668
– ident: CIT0031
  doi: 10.1109/TSMC.2022.3151185
– ident: CIT0051
  doi: 10.1109/TMECH.2017.2728371
– ident: CIT0050
  doi: 10.1016/j.asoc.2018.03.043
– ident: CIT0059
  doi: 10.1016/j.isatra.2022.06.047
– ident: CIT0010
  doi: 10.1109/SENSORS47125.2020.9278616
– ident: CIT0028
– ident: CIT0049
  doi: 10.1016/j.jmsy.2021.03.005
– ident: CIT0044
  doi: 10.1016/j.ymssp.2015.04.021
– ident: CIT0009
  doi: 10.1109/JIOT.2022.3163606
– ident: CIT0055
  doi: 10.1016/j.sigpro.2013.04.015
– ident: CIT0026
  doi: 10.5772/67145
– ident: CIT0019
  doi: 10.1016/j.ress.2021.108063
– ident: CIT0022
  doi: 10.1115/1.4051749
– ident: CIT0032
  doi: 10.1016/j.ymssp.2021.108068
– ident: CIT0047
  doi: 10.1080/09544828.2022.2150448
SSID ssj0008025
Score 2.3471205
Snippet Multisensory systems play a critical role in prognostics and health management (PHM), and utilise the information from multi-device synchronous measurements...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 158
SubjectTerms Adaptive algorithms
Artificial neural networks
Data integration
Data-driven adaptive
decision support design
Fault diagnosis
Feature extraction
Functional analysis
Measuring instruments
Multisensor fusion
multisensory information fusion
Predictive maintenance
prognostics and health management
Qualitative analysis
Sensors
Systems analysis
Title A data-driven adaptive algorithm and decision support design of multisensory information fusion for prognostics and health management applications
URI https://www.tandfonline.com/doi/abs/10.1080/09544828.2023.2177937
https://www.proquest.com/docview/2789553261
Volume 34
WOSCitedRecordID wos000935106200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis (UCD Library purchased years)
  customDbUrl:
  eissn: 1466-1837
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008025
  issn: 0954-4828
  databaseCode: TFW
  dateStart: 19900101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQADb0ShIA-sLk2cNMlYISqmiqGIbpHjByC1TZWkSPwNfjF3jlO1QqgDjLF0Tvz6_F38-Y6QW9nvZ3j6woCKcxYoY5gAv4FpbpSIZah4rGyyiWg0iieT5MmpCUsnq0Qf2tSBIixW4-IWWdko4u6AFYBT4aMwy-dd4NQY4w1QGJg9zvHx8GWFxXHPpl1FC4YmzR2e32rZ2J02Ypf-wGq7AQ0P_-HTj8iBY590UE-XY7Kj5ydkfy0m4Sn5GlBUjTJVIA5SocQCEZGK6WtevFdvMwovp8ql5qHlcoEMHgpQCUJzQ61EsQTvOC8-qWsbjj41S2sBBRRVYfPchoi21dW3MelspcWh6wfrZ-R5-DC-f2QucQOT4PFWDFkU8LLEM57qqUxzqbgJeWTiQIbQck9EoeBCKxlEvsYNMQs8z2htAi6B4fFz0prnc31BqEHAiH0N9ekg5DJJwl4_kwJwI_J8HbdJ0AxYKl1Uc0yuMU29Jvip6_IUuzx1Xd4m3ZXZog7rsc0gWZ8NaWX_p5g6-UnKt9h2mqmTOoQoU7yBHIZAnr3LP1R9RfbwsZaRd0irKpb6muzKDxjo4sauhW_ZxAcu
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELXYJODAjigU8IGroYnjJjkiRFUE9FQEN8v1AkhtU6UtEr_BFzPjJFURQhzgFMnRTOJt_MZ-niHkTDebPTx9YQDFOYuMc0yB38Asd0YlWhieGJ9sIu50kqendP4uDNIq0Yd2RaAIb6txcuNmdEWJuwBYAF5FiMyskJ8DqMYgb4tkWcADaX3d1uPMGicNn3gVRRjKVLd4flLzZX36Er30m7X2S1Br8z9-fotslACUXhYjZpss2OEOWZ8LS7hLPi4pEkeZydEUUmXUCI0iVf3nLH-dvAwofJ2aMjsPHU9HCOKhAMkgNHPUsxTH4CBn-TstK4cDgLqpl4ACisSwYeajRHt1xYVMOpjRcej82foeeWhdd6_arMzdwDQ4vROGQAqgWRq4wDRMz3JtuBM8dkmkBdQ8ULFQXFmjozi0uCb2oiBw1rqIawB5fJ8sDbOhPSDUoc1IQgv6bCS4TlPRaPa0AtMRB6FNaiSqekzqMrA55tfoy6CKf1o2ucQml2WT18j5TGxURPb4TSCdHw5y4rdUXJH_RPJfZOvV2JGlkRhLvIQsBODn4PAPqk_Jart7fyfvbjq3R2QNXxWs8jpZmuRTe0xW9Bt0en7iJ8YnYGwLTw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELWgIAQHdsSOD1xdmjhpkiMCKhCo4gCCm-V6AaS2qdIWid_gi5lxnKoVQhzg6miceBu_iZ_fEHKqms0Onr4wgOKcRdpaJiFuYIZbLVMVa55ql2wiabfT5-fs3rMJh55WiTG0LYUinK_GxT3QtmLEnQEqgKAiRGJWyOuAqVHjbZ4sOHEsmNIPraeJM04bLu8qmjC0qS7x_FTNzPY0I176zVm7Hai19g_fvk5WPfyk5-V82SBzpr9JVqZECbfI5zlF2ijTBTpCKrUcoEuksvuSF2-j1x6Fl1Ptc_PQ4XiAEB4KkApCc0sdR3EI4XFefFDfNhx-asfOAgoo0sL6udOIdtWV1zFpb0LGodMn69vksXX1cHHNfOYGpiDkHTGEUQDMssAGuqE7hivNbcwTm0YqhpYHMokll0arKAkN7oidKAisMTbiCiAe3yG1ft43u4Ra9BhpaKA-E8VcZVncaHaUBMeRBKFJ90hUDZhQXtYcs2t0RVCpn_ouF9jlwnf5HqlPzAalrsdvBtn0bBAj90PFltlPBP_F9rCaOsK7iKHAK8hxDOg52P9D1Sdk6f6yJe5u2rcHZBmflJTyQ1IbFWNzRBbVO4x5ceyWxRcErAnz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data-driven+adaptive+algorithm+and+decision+support+design+of+multisensory+information+fusion+for+prognostics+and+health+management+applications&rft.jtitle=Journal+of+engineering+design&rft.au=Xie%2C+Tingli&rft.au=Huang%2C+Xufeng&rft.au=Park%2C+Hyung+Wook&rft.au=Kim%2C+Heung+Soo&rft.date=2023-02-01&rft.issn=0954-4828&rft.eissn=1466-1837&rft.volume=34&rft.issue=2&rft.spage=158&rft.epage=179&rft_id=info:doi/10.1080%2F09544828.2023.2177937&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_09544828_2023_2177937
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0954-4828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0954-4828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0954-4828&client=summon