Randomized Spectral Clustering in Large-Scale Stochastic Block Models

Spectral clustering has been one of the widely used methods for community detection in networks. However, large-scale networks bring computational challenges to the eigenvalue decomposition therein. In this paper, we study the spectral clustering using randomized sketching algorithms from a statisti...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computational and graphical statistics Ročník 31; číslo 3; s. 887 - 906
Hlavní autoři: Zhang, Hai, Guo, Xiao, Chang, Xiangyu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Alexandria Taylor & Francis 03.07.2022
Taylor & Francis Ltd
Témata:
ISSN:1061-8600, 1537-2715
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Spectral clustering has been one of the widely used methods for community detection in networks. However, large-scale networks bring computational challenges to the eigenvalue decomposition therein. In this paper, we study the spectral clustering using randomized sketching algorithms from a statistical perspective, where we typically assume the network data are generated from a stochastic block model that is not necessarily of full rank. To do this, we first use the recently developed sketching algorithms to obtain two randomized spectral clustering algorithms, namely, the random projection-based and the random sampling-based spectral clustering. Then we study the theoretical bounds of the resulting algorithms in terms of the approximation error for the population adjacency matrix, the misclassification error, and the estimation error for the link probability matrix. It turns out that, under mild conditions, the randomized spectral clustering algorithms lead to the same theoretical bounds as those of the original spectral clustering algorithm. We also extend the results to degree-corrected stochastic block models. Numerical experiments support our theoretical findings and show the efficiency of randomized methods. A new R package called Rclust is developed and made available to the public. Supplementary materials for this article are available online.
AbstractList Spectral clustering has been one of the widely used methods for community detection in networks. However, large-scale networks bring computational challenges to the eigenvalue decomposition therein. In this paper, we study the spectral clustering using randomized sketching algorithms from a statistical perspective, where we typically assume the network data are generated from a stochastic block model that is not necessarily of full rank. To do this, we first use the recently developed sketching algorithms to obtain two randomized spectral clustering algorithms, namely, the random projection-based and the random sampling-based spectral clustering. Then we study the theoretical bounds of the resulting algorithms in terms of the approximation error for the population adjacency matrix, the misclassification error, and the estimation error for the link probability matrix. It turns out that, under mild conditions, the randomized spectral clustering algorithms lead to the same theoretical bounds as those of the original spectral clustering algorithm. We also extend the results to degree-corrected stochastic block models. Numerical experiments support our theoretical findings and show the efficiency of randomized methods. A new R package called Rclust is developed and made available to the public. Supplementary materials for this article are available online.
Spectral clustering has been one of the widely used methods for community detection in networks. However, large-scale networks bring computational challenges to the eigenvalue decomposition therein. In this paper, we study the spectral clustering using randomized sketching algorithms from a statistical perspective, where we typically assume the network data are generated from a stochastic block model that is not necessarily of full rank. To do this, we first use the recently developed sketching algorithms to obtain two randomized spectral clustering algorithms, namely, the random projection-based and the random sampling-based spectral clustering. Then we study the theoretical bounds of the resulting algorithms in terms of the approximation error for the population adjacency matrix, the misclassification error, and the estimation error for the link probability matrix. It turns out that, under mild conditions, the randomized spectral clustering algorithms lead to the same theoretical bounds as those of the original spectral clustering algorithm. We also extend the results to degree-corrected stochastic block models. Numerical experiments support our theoretical findings and show the efficiency of randomized methods. A new R package called Rclust is developed and made available to the public. Supplementary materials for this article are available online.
Author Zhang, Hai
Guo, Xiao
Chang, Xiangyu
Author_xml – sequence: 1
  givenname: Hai
  orcidid: 0000-0002-1104-8283
  surname: Zhang
  fullname: Zhang, Hai
  organization: Center for Modern Statistics, School of Mathematics, Northwest University
– sequence: 2
  givenname: Xiao
  surname: Guo
  fullname: Guo, Xiao
  organization: Center for Modern Statistics, School of Mathematics, Northwest University
– sequence: 3
  givenname: Xiangyu
  surname: Chang
  fullname: Chang, Xiangyu
  organization: Center for Intelligent Decision-Making and Machine Learning, School of Management, Xi'an Jiaotong University
BookMark eNqFkEtLQzEQhYNU0FZ_gnDB9a153JtccaOW-oCKYHUd0jxqNE1qkiL115vSunGhm5lZnHNm5uuDng9eA3CC4BDBDp4hSFFHIRxiiHEppKGE7oFD1BJWY4baXpmLpt6IDkA_pTcIIaLn7BCMn4RXYWG_tKqmSy1zFK4auVXKOlo_r6yvJiLOdT2VwulqmoN8FSlbWV27IN-rh6C0S0dg3wiX9PGuD8DLzfh5dFdPHm_vR1eTWhLS5bqFulGK0ga15RLWGKyQkMqYTtKWoZlGVGvYKcqwbBnDSCqhZWOIMWJWfiQDcLrNXcbwsdIp87ewir6s5JjhBnaoQ7So2q1KxpBS1IYvo12IuOYI8g0x_kOMb4jxHbHiu_jlkzaLbIMvVKz71325dVtvQlyIzxCd4lmsXYgmCi9t4uTviG-6G4Vt
CitedBy_id crossref_primary_10_1007_s10115_023_02021_2
crossref_primary_10_3390_e25020345
crossref_primary_10_1002_sta4_70098
crossref_primary_10_1002_spp2_1468
crossref_primary_10_1145_3657300
crossref_primary_10_1007_s11222_025_10723_6
crossref_primary_10_1016_j_knosys_2023_110643
crossref_primary_10_1080_10618600_2025_2551270
crossref_primary_10_1016_j_jspi_2025_106313
crossref_primary_10_1016_j_csda_2023_107835
crossref_primary_10_1038_s41598_022_19456_2
crossref_primary_10_1142_S0217984924502105
crossref_primary_10_3390_e27080866
crossref_primary_10_1016_j_csda_2023_107872
crossref_primary_10_1016_j_chemolab_2025_105463
crossref_primary_10_1016_j_eswa_2023_121088
crossref_primary_10_1080_10618600_2024_2336147
crossref_primary_10_3390_e24091216
Cites_doi 10.1007/s00453-014-9891-7
10.1137/090771806
10.1016/0378-8733(83)90021-7
10.1214/14-EJS978
10.1145/3019134
10.1080/01621459.2017.1408468
10.1093/biomet/asr053
10.1109/TPAMI.2005.244
10.1145/1217299.1217300
10.1137/17M1111590
10.1007/s004540010019
10.1093/oso/9780198805090.001.0001
10.1145/2842602
10.1214/18-AOS1800
10.1080/10618600.2020.1824870
10.1080/07350015.2015.1061437
10.1109/JSTSP.2018.2837638
10.1214/15-AOS1354
10.1214/15-AOAS896
10.1214/16-AOS1447
10.1007/978-3-642-03070-3_28
10.1214/19-AOS1854
10.1145/1109557.1109682
10.1109/TPAMI.2012.88
10.1145/3097983.3098069
10.1093/biomet/asaa022
10.1007/s00211-010-0331-6
10.1017/S0962492920000021
10.1561/2200000005
10.1137/15M1021106
10.18637/jss.v089.i11
10.1007/s11222-019-09862-4
10.1137/04060593X
10.3150/21-BEJ1376
10.1080/01621459.2017.1292914
10.1145/1081870.1081893
10.1214/11-AOS887
10.1007/978-0-387-88146-1
10.1093/biomet/asaa006
10.1007/s11222-007-9033-z
10.1007/11830924_26
10.1007/978-3-030-29349-9_5
10.1017/S1351324909005129
10.1145/1557019.1557118
10.1093/biomet/asy070
10.1111/sjos.12074
10.1109/ICASSP39728.2021.9414030
10.1007/BF01908075
10.1214/14-AOS1285
10.1073/pnas.0803205106
10.1007/s13171-021-00245-4
10.1103/PhysRevE.83.016107
10.1109/FOCS.2004.7
10.1007/s10115-013-0693-z
10.1145/1219092.1219097
10.1109/TIT.2019.2934157
10.1137/120875600
10.1214/14-AOS1274
ContentType Journal Article
Copyright 2022 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2022
2022 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
Copyright_xml – notice: 2022 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2022
– notice: 2022 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
DBID AAYXX
CITATION
JQ2
DOI 10.1080/10618600.2022.2034636
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1537-2715
EndPage 906
ExternalDocumentID 10_1080_10618600_2022_2034636
2034636
Genre Research Article
GroupedDBID -~X
.4S
.7F
.DC
.QJ
0BK
0R~
30N
4.4
5GY
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACIWK
ACMTB
ACTIO
ACTMH
ADCVX
ADGTB
ADXHL
AEGXH
AELLO
AENEX
AEOZL
AEPSL
AEYOC
AFRVT
AFVYC
AGDLA
AGMYJ
AHDZW
AIAGR
AIJEM
AKBRZ
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CS3
D0L
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
JAA
KYCEM
LJTGL
M4Z
MS~
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SNACF
TAE
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TUS
UT5
UU3
WZA
XWC
ZGOLN
~S~
AAYXX
CITATION
JQ2
ID FETCH-LOGICAL-c338t-50e4dd6641560074f2d1acdff8c6571be16ee08d672c57721cdaec4f3ffab6183
IEDL.DBID TFW
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000773800200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1061-8600
IngestDate Wed Aug 13 04:53:58 EDT 2025
Sat Nov 29 03:24:18 EST 2025
Tue Nov 18 22:02:54 EST 2025
Mon Oct 20 23:47:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-50e4dd6641560074f2d1acdff8c6571be16ee08d672c57721cdaec4f3ffab6183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1104-8283
PQID 2724081816
PQPubID 29738
PageCount 20
ParticipantIDs crossref_citationtrail_10_1080_10618600_2022_2034636
informaworld_taylorfrancis_310_1080_10618600_2022_2034636
crossref_primary_10_1080_10618600_2022_2034636
proquest_journals_2724081816
PublicationCentury 2000
PublicationDate 2022-07-03
PublicationDateYYYYMMDD 2022-07-03
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-03
  day: 03
PublicationDecade 2020
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle Journal of computational and graphical statistics
PublicationYear 2022
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0072
CIT0071
Wang S. (CIT0080) 2019; 20
CIT0030
CIT0074
CIT0073
CIT0032
Lehoucq R. B. (CIT0038) 1995
Adamic L. A. (CIT0004) 2005
CIT0031
CIT0075
CIT0034
CIT0078
CIT0033
CIT0077
Abbe E. (CIT0001) 2018; 18
Levin K. D. (CIT0042) 2021; 22
CIT0070
Pilanci M. (CIT0059) 2016; 17
Wang S. (CIT0079) 2017; 18
CIT0036
CIT0035
Yun S.-Y. (CIT0087) 2016
CIT0037
CIT0039
Allen-Zhu Z. (CIT0006) 2016
CIT0083
(CIT0041) 2007; 1
CIT0082
CIT0085
CIT0040
CIT0084
Gao C. (CIT0025) 2017; 18
CIT0043
CIT0086
CIT0045
CIT0044
CIT0088
Qin T. (CIT0061) 2013
Manning C. (CIT0053) 2010; 16
CIT0081
Deng S. (CIT0016) 2021; 22
Raskutti G. (CIT0063) 2016; 17
CIT0003
CIT0047
CIT0002
CIT0046
CIT0005
CIT0048
CIT0007
Mahoney M. W. (CIT0051) 2011; 3
Wang H. (CIT0076) 2019; 20
CIT0009
CIT0008
CIT0052
CIT0010
CIT0054
CIT0012
Ma P. (CIT0049) 2015; 16
CIT0056
CIT0055
CIT0014
CIT0058
CIT0057
Chin P. (CIT0013) 2015
CIT0015
CIT0018
CIT0017
CIT0019
CIT0060
Ma S. (CIT0050) 2021; 22
CIT0062
Drineas p. (CIT0020) 2012; 13
CIT0021
CIT0065
CIT0064
CIT0023
CIT0067
CIT0022
CIT0066
Calvetti D. (CIT0011) 1994; 2
CIT0069
CIT0024
CIT0068
CIT0027
CIT0026
CIT0029
CIT0028
References_xml – ident: CIT0081
  doi: 10.1007/s00453-014-9891-7
– ident: CIT0028
  doi: 10.1137/090771806
– ident: CIT0029
  doi: 10.1016/0378-8733(83)90021-7
– ident: CIT0048
  doi: 10.1214/14-EJS978
– ident: CIT0015
  doi: 10.1145/3019134
– volume: 18
  start-page: 8039
  year: 2017
  ident: CIT0079
  publication-title: The Journal of Machine Learning Research
– ident: CIT0078
  doi: 10.1080/01621459.2017.1408468
– ident: CIT0014
  doi: 10.1093/biomet/asr053
– ident: CIT0074
  doi: 10.1109/TPAMI.2005.244
– ident: CIT0044
– volume: 1
  start-page: 1
  year: 2007
  ident: CIT0041
  publication-title: ACM Transactions on Knowledge Discovery from Data (TKDD)
  doi: 10.1145/1217299.1217300
– ident: CIT0067
– ident: CIT0073
  doi: 10.1137/17M1111590
– ident: CIT0056
  doi: 10.1007/s004540010019
– ident: CIT0086
– ident: CIT0057
  doi: 10.1093/oso/9780198805090.001.0001
– ident: CIT0017
  doi: 10.1145/2842602
– ident: CIT0058
  doi: 10.1214/18-AOS1800
– ident: CIT0083
  doi: 10.1080/10618600.2020.1824870
– ident: CIT0088
  doi: 10.1080/07350015.2015.1061437
– ident: CIT0005
  doi: 10.1109/JSTSP.2018.2837638
– ident: CIT0054
– ident: CIT0024
  doi: 10.1214/15-AOS1354
– ident: CIT0032
  doi: 10.1214/15-AOAS896
– ident: CIT0033
  doi: 10.1214/16-AOS1447
– ident: CIT0065
  doi: 10.1007/978-3-642-03070-3_28
– ident: CIT0002
  doi: 10.1214/19-AOS1854
– ident: CIT0018
  doi: 10.1145/1109557.1109682
– ident: CIT0047
  doi: 10.1109/TPAMI.2012.88
– volume: 17
  start-page: 7508
  year: 2016
  ident: CIT0063
  publication-title: The Journal of Machine Learning Research
– ident: CIT0085
  doi: 10.1145/3097983.3098069
– ident: CIT0023
  doi: 10.1093/biomet/asaa022
– volume: 18
  start-page: 6446
  year: 2018
  ident: CIT0001
  publication-title: The Journal of Machine Learning Research
– ident: CIT0037
– ident: CIT0019
  doi: 10.1007/s00211-010-0331-6
– ident: CIT0055
  doi: 10.1017/S0962492920000021
– ident: CIT0027
  doi: 10.1561/2200000005
– ident: CIT0060
  doi: 10.1137/15M1021106
– volume: 13
  start-page: 3475
  year: 2012
  ident: CIT0020
  publication-title: Journal of Machine Learning Research
– ident: CIT0026
– ident: CIT0021
  doi: 10.18637/jss.v089.i11
– ident: CIT0043
  doi: 10.1007/s11222-019-09862-4
– ident: CIT0009
  doi: 10.1137/04060593X
– ident: CIT0069
  doi: 10.3150/21-BEJ1376
– volume: 20
  start-page: 1
  year: 2019
  ident: CIT0076
  publication-title: Journal of Machine Learning Research
– volume: 22
  start-page: 1
  year: 2021
  ident: CIT0050
  publication-title: Journal of Machine Learning Research
– ident: CIT0077
  doi: 10.1080/01621459.2017.1292914
– ident: CIT0040
  doi: 10.1145/1081870.1081893
– ident: CIT0064
  doi: 10.1214/11-AOS887
– ident: CIT0035
  doi: 10.1007/978-0-387-88146-1
– ident: CIT0045
  doi: 10.1093/biomet/asaa006
– volume: 3
  start-page: 123
  year: 2011
  ident: CIT0051
  publication-title: Foundations and Trends[textregistered] in Machine Learning
– start-page: 36
  volume-title: the 3rd international workshop
  year: 2005
  ident: CIT0004
– ident: CIT0075
  doi: 10.1007/s11222-007-9033-z
– ident: CIT0007
  doi: 10.1007/11830924_26
– ident: CIT0046
– ident: CIT0071
  doi: 10.1007/978-3-030-29349-9_5
– volume: 16
  start-page: 100
  year: 2010
  ident: CIT0053
  publication-title: Natural Language Engineering
  doi: 10.1017/S1351324909005129
– volume: 20
  start-page: 1
  year: 2019
  ident: CIT0080
  publication-title: Journal of Machine Learning Research
– start-page: 974
  year: 2016
  ident: CIT0006
  publication-title: Advances in Neural Information Processing Systems
– volume: 16
  start-page: 861
  year: 2015
  ident: CIT0049
  publication-title: The Journal of Machine Learning Research
– start-page: 965
  year: 2016
  ident: CIT0087
  publication-title: Advances in Neural Information Processing Systems
– ident: CIT0082
  doi: 10.1145/1557019.1557118
– volume: 18
  start-page: 1980
  year: 2017
  ident: CIT0025
  publication-title: The Journal of Machine Learning Research
– ident: CIT0012
  doi: 10.1093/biomet/asy070
– start-page: 3120
  year: 2013
  ident: CIT0061
  publication-title: Advances in Neural Information Processing Systems
– ident: CIT0070
  doi: 10.1111/sjos.12074
– volume: 22
  start-page: 1
  year: 2021
  ident: CIT0016
  publication-title: Journal of Machine Learning Research
– ident: CIT0030
  doi: 10.1109/ICASSP39728.2021.9414030
– volume: 2
  start-page: 1
  year: 1994
  ident: CIT0011
  publication-title: Electronic Transactions on Numerical Analysis
– ident: CIT0031
  doi: 10.1007/BF01908075
– ident: CIT0062
– ident: CIT0066
  doi: 10.1214/14-AOS1285
– ident: CIT0052
  doi: 10.1073/pnas.0803205106
– ident: CIT0008
  doi: 10.1007/s13171-021-00245-4
– ident: CIT0010
– ident: CIT0034
  doi: 10.1103/PhysRevE.83.016107
– ident: CIT0036
  doi: 10.1109/FOCS.2004.7
– ident: CIT0084
  doi: 10.1007/s10115-013-0693-z
– ident: CIT0003
  doi: 10.1145/1219092.1219097
– volume: 17
  start-page: 1842
  year: 2016
  ident: CIT0059
  publication-title: The Journal of Machine Learning Research
– ident: CIT0068
  doi: 10.1109/TIT.2019.2934157
– start-page: 391
  year: 2015
  ident: CIT0013
  publication-title: Conference on Learning Theory
– ident: CIT0022
  doi: 10.1137/120875600
– volume-title: Technical Report, Department of Computational and Applied Mathematics
  year: 1995
  ident: CIT0038
– volume: 22
  start-page: 1
  year: 2021
  ident: CIT0042
  publication-title: Journal of Machine Learning Research
– ident: CIT0039
  doi: 10.1214/14-AOS1274
– ident: CIT0072
SSID ssj0001697
Score 2.511411
Snippet Spectral clustering has been one of the widely used methods for community detection in networks. However, large-scale networks bring computational challenges...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 887
SubjectTerms Algorithms
Clustering
Community detection
Eigenvalues
Errors
Network
Random projection
Random sampling
Statistical analysis
Stochastic models
Title Randomized Spectral Clustering in Large-Scale Stochastic Block Models
URI https://www.tandfonline.com/doi/abs/10.1080/10618600.2022.2034636
https://www.proquest.com/docview/2724081816
Volume 31
WOSCitedRecordID wos000773800200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1537-2715
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001697
  issn: 1061-8600
  databaseCode: TFW
  dateStart: 19920301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYigDjwKiUJAHVkOeTjpC1YoBKkSL6BY5foiKkqImZeDXc5c4FRVCHWDMcE5y57v7zjp_R8iFByicB8pjOgoUC4QAn1NSMq25EX4slGeccthENBjE43HnwXYT5ratEmtoUxFFlLEanVuked0Rd4VVTAyJGqo7D-9S-Uh6BVEYUj-65qj_vIzFrh2vAhIMReo7PL-tspKdVrhLf8TqMgH1d__h0_fIjkWf9LraLvtkQ2dNsn2_pG7Nm6SB8LNibz4gvUd40-xt8qkVxUn1eCxCu9MFsitAzqOTjN5hKzkbgqk1HRYz-SJQlt5AknylOGltmh-Sp35v1L1ldvACk1CxFix0dKAU51jcIcYwnnKFVMbEkoeRm2qXa-3EikeeDAGeu1IJLQPjGyNS-EH_iGxms0wfE6oN1N6wlBshkJCO8HWYSh0ILD1lx2-RoFZ4Ii0rOQ7HmCauJS-tVZagyhKrsha5XIq9V7Qc6wQ6362ZFOV5iKmGlyT-Gtl2bfrEenieeBGSwwE-4id_WPqUNPCx7P_122SzmC_0GdmSH2Do-Xm5l78AbMntXQ
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTwIxEJ4omogHH6gRRe3B6-rudl8clUAwAgfByK0pfUQiLoaHB3-9nX0QiDEc9LyZ7u5M25mvmX4fwLVrqvDAk66lQk9aHudmzUkhLKUCzWnEpavtRGwi7HSifr-6fBcG2yoRQ-uUKCLZq3Fx42F03hJ3izAmMpnawDsXL1NRZL3ahC2_Sn2c5b3Gy2I3djKBFWNioU1-i-e3YVby0wp76Y_dOklBjf3_-PgD2MsKUHKXzphD2FBxCXbbC_bWaQmKWIGmBM5HUH8yrxq_D7-UJChWjycjpDaaI8GCSXtkGJMWdpNbXRNtRbqzsXjlaEvuTZ58Iyi2Npoew3Oj3qs1rUx7wRIGtM4s31aelEGA-A7LDO1KhwupdSQCP3QGygmUsiMZhK7wTYXuCMmV8DTVmg_MD9ITKMTjWJ0CUdrAbzOUE2ItIWxOlT8QyuOIPkWVlsHLPc5ERkyO-hgj5mT8pbnLGLqMZS4rw83C7CNl5lhnUF0OJ5slRyI61S9hdI1tJY89yxb5lLkh8sOZEik4-8PQV7DT7LVbrPXQeTyHIj5K2oFpBQqzyVxdwLb4NEGfXCYT-xuKtvGH
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwEB2xCZUDO6KsPnANNEuT9MhWgShVRUFws1wvoqKkVRM48PXMJE5FhRAHOEfjJDO25z1r_AbgyEMUHgbKc3QUKCcQAtecktLROjTCj4XyTC1vNhG12_HTU6NjqwlTW1ZJHNoUQhH5Xk2Le6RMWRF3QiwmxkSN7M6ju1Q-iV7NwjxC54Cquu6bj5PN2LX9VdDEIZvyEs9Pw0ylpynx0m-bdZ6Bmiv_8O2rsGzhJzst5ssazOhkHZZuJ9qt6TpUCH8W8s0bcHmHbxq-9j-0YtSqns5F2PngjeQVMOmxfsJaVEvudDHWmnWzoXwWZMvOMEu-MGq1Nkg34aF5eX9-5djOC45Eypo59ZoOlApDYncEMoynXCGVMbEM65Hb026odS1WYeTJOuJzVyqhZWB8Y0QPf9DfgrlkmOhtYNog-cah3IiQhKwJX9d7UgeCuKds-FUISodzaWXJqTvGgLtWvbR0GSeXceuyKhxPzEaFLsdvBo2v0eRZfiBiiu4l3P_Fdq8MPbdLPOVeROpwCJDCnT8MfQiLnYsmb123b3ahQk_yWmB_D-ay8ZvehwX5jjEfH-TT-hOwh_A5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Randomized+Spectral+Clustering+in+Large-Scale+Stochastic+Block+Models&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=Zhang%2C+Hai&rft.au=Guo%2C+Xiao&rft.au=Chang%2C+Xiangyu&rft.date=2022-07-03&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1061-8600&rft.eissn=1537-2715&rft.volume=31&rft.issue=3&rft.spage=887&rft.epage=906&rft_id=info:doi/10.1080%2F10618600.2022.2034636&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon