Distributed Economic Dispatch of Microgrids Based on ADMM Algorithms With Encryption-Decryption Rules
Distributed economic dispatch (ED) has emerged as a critical issue in microgrid operations due mainly to the wide application of various clean energy as well as energy storage units. The openness of communication networks in microgrids can lead to privacy breaches, which pose a serious threat to the...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on automation science and engineering Jg. 22; S. 8427 - 8438 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.01.2025
|
| Schlagworte: | |
| ISSN: | 1545-5955, 1558-3783 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Distributed economic dispatch (ED) has emerged as a critical issue in microgrid operations due mainly to the wide application of various clean energy as well as energy storage units. The openness of communication networks in microgrids can lead to privacy breaches, which pose a serious threat to the entire electricity market. As such, this paper presents a distributed ED algorithm based on the alternating direction method of multipliers (ADMM), where a quantization-based encryption and decryption rule is integrated to avoid privacy leakage while iteratively acquiring the optimal ED scheme. By resorting to the property of monotonically convergent sequences, a sufficient condition about the learning rate is profoundly revealed to guarantee the algorithm convergence. Two extended results are presented, respectively, to enhance the convergence rate and meet the requirement of plug-and-play scenarios. Finally, the validity (both privacy and optimality) of the proposed algorithm is verified by using the dual-source trolleybus system in Beijing. Note to Practitioners-This paper develops an engineering-oriented ED algorithm that optimizes the total generation costs of smart grids online while guaranteeing system constraints. Shared network communication undoubtedly plays a significant role in achieving iteratively the optimal solution of distributed algorithms. However, some crucial and sensitive information exchanged via an open and shared network could be eavesdropped by malicious attackers, which could result in a serious security threat affecting the reliability and stability of the smart grid. To overcome such a shortage, an encryption-decryption rule is constructed via a dynamic quantizer. In light of such a rule, the presented algorithm based on ADMM can iteratively acquire the optimal ED solution in a distributed way, realizing the requirements of optimality and privacy. The desired range of the learning rate is disclosed to guide the parameter selection, and two improved versions are proposed to meet more general engineering practice involving plug-and-play scenarios. |
|---|---|
| AbstractList | Distributed economic dispatch (ED) has emerged as a critical issue in microgrid operations due mainly to the wide application of various clean energy as well as energy storage units. The openness of communication networks in microgrids can lead to privacy breaches, which pose a serious threat to the entire electricity market. As such, this paper presents a distributed ED algorithm based on the alternating direction method of multipliers (ADMM), where a quantization-based encryption and decryption rule is integrated to avoid privacy leakage while iteratively acquiring the optimal ED scheme. By resorting to the property of monotonically convergent sequences, a sufficient condition about the learning rate is profoundly revealed to guarantee the algorithm convergence. Two extended results are presented, respectively, to enhance the convergence rate and meet the requirement of plug-and-play scenarios. Finally, the validity (both privacy and optimality) of the proposed algorithm is verified by using the dual-source trolleybus system in Beijing. Note to Practitioners-This paper develops an engineering-oriented ED algorithm that optimizes the total generation costs of smart grids online while guaranteeing system constraints. Shared network communication undoubtedly plays a significant role in achieving iteratively the optimal solution of distributed algorithms. However, some crucial and sensitive information exchanged via an open and shared network could be eavesdropped by malicious attackers, which could result in a serious security threat affecting the reliability and stability of the smart grid. To overcome such a shortage, an encryption-decryption rule is constructed via a dynamic quantizer. In light of such a rule, the presented algorithm based on ADMM can iteratively acquire the optimal ED solution in a distributed way, realizing the requirements of optimality and privacy. The desired range of the learning rate is disclosed to guide the parameter selection, and two improved versions are proposed to meet more general engineering practice involving plug-and-play scenarios. |
| Author | Ding, Derui Yi, Xiaojian Sun, Lei Dong, Hongli |
| Author_xml | – sequence: 1 givenname: Lei surname: Sun fullname: Sun, Lei organization: Department of Control Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China – sequence: 2 givenname: Derui orcidid: 0000-0001-7402-6682 surname: Ding fullname: Ding, Derui email: deruiding2010@usst.edu.cn organization: Department of Control Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China – sequence: 3 givenname: Hongli orcidid: 0000-0001-8531-6757 surname: Dong fullname: Dong, Hongli organization: Sanya Offshore Oil and Gas Research Institute, Northeast Petroleum University, Sanya, China – sequence: 4 givenname: Xiaojian orcidid: 0000-0002-9214-257X surname: Yi fullname: Yi, Xiaojian organization: School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China |
| BookMark | eNp9kM1qwzAQhEVJoUnaByj0oBdwqh_Llo9u4v5AQqFN6dHI8jpRcawgKYe8fW2SQumhpxmWmWX3m6BRZztA6JaSGaUku1_n78WMERbPeCxFxtgFGlMhZMRTyUeDj0UkMiGu0MT7L9InZUbGCBbGB2eqQ4AaF9p2dmc07od7FfQW2wavjHZ240zt8YPyfcp2OF-sVjhvN9aZsN15_NkLLjrtjvtgbBct4Mfit0ML_hpdNqr1cHPWKfp4LNbz52j5-vQyz5eR5lyGKFZMC6a5UgnwKk1iVUMCKqWSk5qkIJlkwIE2glEVC1VVkKiGQdb_qBglfIrS097-ZO8dNKU2QQ13BKdMW1JSDrTKgVY50CrPtPom_dPcO7NT7vhv5-7UMQDwK5_GJBYZ_wYx9Xkr |
| CODEN | ITASC7 |
| CitedBy_id | crossref_primary_10_3390_electronics14081509 crossref_primary_10_1007_s11432_024_4328_1 crossref_primary_10_53941_ijndi_2025_100004 crossref_primary_10_1080_21642583_2025_2467077 crossref_primary_10_3390_pr13082531 |
| Cites_doi | 10.1109/TASE.2023.3267034 10.1080/21642583.2023.2192008 10.1109/TSG.2018.2833108 10.1080/00207721.2022.2070794 10.1016/j.automatica.2021.109847 10.1109/TAC.2019.2902731 10.1109/TSP.2021.3083981 10.1109/TSG.2021.3063712 10.1109/TAC.2020.3005920 10.1109/TPWRS.2020.3000984 10.1109/TASE.2022.3169069 10.1109/TAC.2022.3164839 10.1109/TASE.2023.3275808 10.1109/TCSI.2021.3081372 10.1109/TASE.2022.3155163 10.1109/TIFS.2021.3106161 10.1109/60.577285 10.1109/TPWRS.2017.2702179 10.1109/TAC.2008.2009515 10.1109/TSG.2017.2676179 10.1109/TASE.2022.3149764 10.1109/TCNS.2019.2925267 10.1631/FITEE.2300565 10.1109/TCST.2022.3208456 10.1080/00207721.2023.2250043 10.1016/j.automatica.2017.03.016 10.1016/j.automatica.2022.110359 10.1109/TNNLS.2022.3192346 10.1109/TSG.2021.3091624 10.1109/TITS.2015.2492564 10.1109/TII.2020.2966713 10.1109/TPWRS.2019.2943344 10.1109/TSMC.2019.2896292 10.1109/TAC.2019.2890887 10.1080/21642583.2023.2177771 10.1109/TASE.2023.3252659 10.1109/TAC.2020.2968876 10.1109/TNSE.2022.3216572 10.1109/TPWRS.2013.2267057 10.1109/TPWRS.2017.2784564 10.1109/TPWRS.2016.2576465 10.1109/TIE.2016.2615037 10.1109/TAC.2019.2910171 10.1109/TSG.2018.2834368 10.53941/ijndi.2023.100015 10.1109/TII.2017.2785366 10.1109/TIV.2023.3335866 10.53941/ijndi0201001 10.53941/ijndi.2023.100002 10.1109/TII.2020.2996198 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TASE.2024.3485922 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-3783 |
| EndPage | 8438 |
| ExternalDocumentID | 10_1109_TASE_2024_3485922 10740459 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Hainan Province Science and Technology Special Fund of China grantid: ZDYF2022SHFZ105 funderid: 10.13039/501100009076 – fundername: National Natural Science Foundation of China grantid: 62373251; U21A2019; 61973219 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION |
| ID | FETCH-LOGICAL-c338t-4a2c52c3aa6e3b764ade6ea71830d07e8282e3e1f521a45abbe6af2e9783a2103 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001346627600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-5955 |
| IngestDate | Sat Nov 29 08:04:36 EST 2025 Tue Nov 18 22:10:32 EST 2025 Wed Aug 27 01:37:26 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c338t-4a2c52c3aa6e3b764ade6ea71830d07e8282e3e1f521a45abbe6af2e9783a2103 |
| ORCID | 0000-0001-8531-6757 0000-0001-7402-6682 0000-0002-9214-257X |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_10740459 crossref_primary_10_1109_TASE_2024_3485922 crossref_citationtrail_10_1109_TASE_2024_3485922 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on automation science and engineering |
| PublicationTitleAbbrev | TASE |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref35 doi: 10.1109/TASE.2023.3267034 – ident: ref11 doi: 10.1080/21642583.2023.2192008 – ident: ref14 doi: 10.1109/TSG.2018.2833108 – ident: ref34 doi: 10.1080/00207721.2022.2070794 – ident: ref47 doi: 10.1016/j.automatica.2021.109847 – ident: ref43 doi: 10.1109/TAC.2019.2902731 – ident: ref49 doi: 10.1109/TSP.2021.3083981 – ident: ref17 doi: 10.1109/TSG.2021.3063712 – ident: ref40 doi: 10.1109/TAC.2020.3005920 – ident: ref19 doi: 10.1109/TPWRS.2020.3000984 – ident: ref31 doi: 10.1109/TASE.2022.3169069 – ident: ref4 doi: 10.1109/TAC.2022.3164839 – ident: ref21 doi: 10.1109/TASE.2023.3275808 – ident: ref42 doi: 10.1109/TCSI.2021.3081372 – ident: ref1 doi: 10.1109/TASE.2022.3155163 – ident: ref45 doi: 10.1109/TIFS.2021.3106161 – ident: ref6 doi: 10.1109/60.577285 – ident: ref16 doi: 10.1109/TPWRS.2017.2702179 – ident: ref10 doi: 10.1109/TAC.2008.2009515 – ident: ref25 doi: 10.1109/TSG.2017.2676179 – ident: ref33 doi: 10.1109/TASE.2022.3149764 – ident: ref9 doi: 10.1109/TCNS.2019.2925267 – ident: ref12 doi: 10.1631/FITEE.2300565 – ident: ref27 doi: 10.1109/TCST.2022.3208456 – ident: ref3 doi: 10.1080/00207721.2023.2250043 – ident: ref38 doi: 10.1016/j.automatica.2017.03.016 – ident: ref8 doi: 10.1016/j.automatica.2022.110359 – ident: ref28 doi: 10.1109/TNNLS.2022.3192346 – ident: ref46 doi: 10.1109/TSG.2021.3091624 – ident: ref50 doi: 10.1109/TITS.2015.2492564 – ident: ref48 doi: 10.1109/TII.2020.2966713 – ident: ref20 doi: 10.1109/TPWRS.2019.2943344 – ident: ref29 doi: 10.1109/TSMC.2019.2896292 – ident: ref39 doi: 10.1109/TAC.2019.2890887 – ident: ref36 doi: 10.1080/21642583.2023.2177771 – ident: ref2 doi: 10.1109/TASE.2023.3252659 – ident: ref41 doi: 10.1109/TAC.2020.2968876 – ident: ref30 doi: 10.1109/TNSE.2022.3216572 – ident: ref5 doi: 10.1109/TPWRS.2013.2267057 – ident: ref26 doi: 10.1109/TPWRS.2017.2784564 – ident: ref7 doi: 10.1109/TPWRS.2016.2576465 – ident: ref15 doi: 10.1109/TIE.2016.2615037 – ident: ref37 doi: 10.1109/TAC.2019.2910171 – ident: ref13 doi: 10.1109/TSG.2018.2834368 – ident: ref22 doi: 10.53941/ijndi.2023.100015 – ident: ref24 doi: 10.1109/TII.2017.2785366 – ident: ref32 doi: 10.1109/TIV.2023.3335866 – ident: ref18 doi: 10.53941/ijndi0201001 – ident: ref23 doi: 10.53941/ijndi.2023.100002 – ident: ref44 doi: 10.1109/TII.2020.2996198 |
| SSID | ssj0024890 |
| Score | 2.4189281 |
| Snippet | Distributed economic dispatch (ED) has emerged as a critical issue in microgrid operations due mainly to the wide application of various clean energy as well... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 8427 |
| SubjectTerms | Convergence Convex functions Costs distributed alternating direction method of multipliers distributed economic dispatch encryption-decryption rules Generators Heuristic algorithms Microgrids Optimization Petroleum Privacy Sun |
| Title | Distributed Economic Dispatch of Microgrids Based on ADMM Algorithms With Encryption-Decryption Rules |
| URI | https://ieeexplore.ieee.org/document/10740459 |
| Volume | 22 |
| WOSCitedRecordID | wos001346627600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-3783 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024890 issn: 1545-5955 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwGA86POjBtzhf5OBJyOyS9JHjdBse3BCdultJk686mO3oOsH_3iTrdB4UPDWEBEp-Id_3-54InTOZsiQQgshEUcJTqonkESeGC0kpzI1pOu_5023Y70fDobirktVdLgwAuOAzaNih8-XrXM2sqezSBg8aFUSsotUwDObJWt-F9SJnULEqAfGF71cuzKYnLgeth46hgpQ3GI98QekPIbTUVcUJle7WP39nG21W2iNuzeHeQSuQ7aKNpZqCewjathSu7WIFGi_SjrGZnJhH9xXnKe7ZGLyXYqSn-MrIMI3zDLfavR5ujV_yYlS-vk3xs_ngTqaKD_ekkDYshvh-NobpPnrsdgbXN6TqpUCUIaEl4ZIqnyomZQAsCQMuNQQgjWRinvZCMMSLAoNmasS55L5MEghkSsFahqShhewA1bI8g0OEEw-0B1SDMqoBTag05-BbNZDxRPNmVEfe4nBjVRUat_0uxrEjHJ6ILR6xxSOu8Kiji68tk3mVjb8W71sslhbOYTj6Zf4YrVPbtNfZTU5QrSxmcIrW1Hs5mhZn7hJ9AmxgxEc |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA7eQH3wOvFuHnwSMrsk7ZrH6TYUtyE6L28lTU7nYLbSbYL_3iTrdD4o-NQQEij5Qs75zhWhUyYTFgdCEBkrSnhCNZE85MRwISmFuTEV5z1_bFU7nfD5WdwWyeouFwYAXPAZlO3Q-fJ1psbWVHZugweNCiLm0aLPOfUm6VrfpfVCZ1KxSgHxhe8XTsyKJ867tfuGIYOUlxkPfUHpDzE001fFiZXm-j9_aAOtFfojrk0A30RzkG6h1ZmqgtsI6rYYru1jBRpPE4-xmXwzz-4LzhLctlF4vbyvh_jCSDGNsxTX6u02rg16Wd4fvbwO8ZP54Eaq8g_3qJA6TIf4bjyAYQk9NBvdyytSdFMgytDQEeGSKp8qJmUALK4GXGoIQBrZxDztVcFQLwoMKokR6JL7Mo4hkAkFaxuShhiyHbSQZinsIhx7oD2gGpRRDmhMpTkH3yqCjMeaV8I95E0PN1JFqXHb8WIQOcrhicjiEVk8ogKPPXT2teVtUmfjr8Uli8XMwgkM-7_Mn6Dlq267FbWuOzcHaIXaFr7OinKIFkb5GI7Qknof9Yf5sbtQn83Vx44 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Economic+Dispatch+of+Microgrids+Based+on+ADMM+Algorithms+With+Encryption-Decryption+Rules&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Sun%2C+Lei&rft.au=Ding%2C+Derui&rft.au=Dong%2C+Hongli&rft.au=Yi%2C+Xiaojian&rft.date=2025-01-01&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=22&rft.spage=8427&rft.epage=8438&rft_id=info:doi/10.1109%2FTASE.2024.3485922&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TASE_2024_3485922 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon |