Nonnegative tensors revisited: plane stochastic tensors

In this paper, we develop and enrich the theory of nonnegative tensors. We define the sign nonsingular tensors and establish the relationship between the combinatorial determinant and the permanent of nonnegative tensors. We generalize the results from doubly stochastic matrices to totally plane sto...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Linear & multilinear algebra Ročník 67; číslo 7; s. 1364 - 1391
Hlavní autoři: Che, Maolin, Bu, Changjiang, Qi, Liqun, Wei, Yimin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Taylor & Francis 03.07.2019
Taylor & Francis Ltd
Témata:
ISSN:0308-1087, 1563-5139
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we develop and enrich the theory of nonnegative tensors. We define the sign nonsingular tensors and establish the relationship between the combinatorial determinant and the permanent of nonnegative tensors. We generalize the results from doubly stochastic matrices to totally plane stochastic tensors and obtain a probabilistic algorithm for locating a positive diagonal in a nonnegative tensor under certain conditions. We form a normalization algorithm to convert some nonnegative tensors to plane stochastic tensors. We obtain a lower bound for the minimum of the axial N-index assignment problem by means of the set of plane stochastic tensors.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0308-1087
1563-5139
DOI:10.1080/03081087.2018.1453469