A nonlinear mixed-integer programming approach for variable selection in linear regression model
Modern statistical studies often encounter regression models with high dimensions in which the number of features p is greater than the sample size n. Although the theory of linear models is well-established for the traditional assumption p < n, making valid statistical inference in high dimensio...
Gespeichert in:
| Veröffentlicht in: | Communications in statistics. Simulation and computation Jg. 52; H. 11; S. 5434 - 5445 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Philadelphia
Taylor & Francis
02.11.2023
Taylor & Francis Ltd |
| Schlagworte: | |
| ISSN: | 0361-0918, 1532-4141 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Modern statistical studies often encounter regression models with high dimensions in which the number of features p is greater than the sample size n. Although the theory of linear models is well-established for the traditional assumption p < n, making valid statistical inference in high dimensional cases is a considerable challenge. With recent advances in technologies, the problem appears in many biological, medical, social, industrial, and economic studies. As known, the LASSO method is a popular technique for variable selection/estimation in high dimensional sparse linear models. Here, we show that the prediction performance of the LASSO method can be improved by eliminating the structured noises through a mixed-integer programming approach. As a result of our analysis, a modified variable selection/estimation scheme is proposed for a high dimensional regression model which can be considered as an alternative of the LASSO method. Some numerical experiments are made on the classical riboflavin production and some simulated data sets to shed light on the practical performance of the suggested method. |
|---|---|
| AbstractList | Modern statistical studies often encounter regression models with high dimensions in which the number of features p is greater than the sample size n. Although the theory of linear models is well–established for the traditional assumption p < n, making valid statistical inference in high dimensional cases is a considerable challenge. With recent advances in technologies, the problem appears in many biological, medical, social, industrial, and economic studies. As known, the LASSO method is a popular technique for variable selection/estimation in high dimensional sparse linear models. Here, we show that the prediction performance of the LASSO method can be improved by eliminating the structured noises through a mixed–integer programming approach. As a result of our analysis, a modified variable selection/estimation scheme is proposed for a high dimensional regression model which can be considered as an alternative of the LASSO method. Some numerical experiments are made on the classical riboflavin production and some simulated data sets to shed light on the practical performance of the suggested method. |
| Author | Babaie-Kafaki, Saman Roozbeh, Mahdi Aminifard, Zohre |
| Author_xml | – sequence: 1 givenname: Mahdi orcidid: 0000-0001-8381-738X surname: Roozbeh fullname: Roozbeh, Mahdi organization: Faculty of Mathematics, Statistics and Computer Science, Semnan University – sequence: 2 givenname: Saman orcidid: 0000-0003-0122-8384 surname: Babaie-Kafaki fullname: Babaie-Kafaki, Saman organization: Faculty of Mathematics, Statistics and Computer Science, Semnan University – sequence: 3 givenname: Zohre surname: Aminifard fullname: Aminifard, Zohre organization: Faculty of Mathematics, Statistics and Computer Science, Semnan University |
| BookMark | eNqFkE1LxDAQhoMouK7-BCHguWvSNGuKFxfxCwQveo5JOlmztMk6qV__3pZdLx70NMzwvu_MPAdkN6YIhBxzNuNMsVMm5pzVXM1KVvIZr2smSrFDJlyKsqh4xXfJZNQUo2ifHOS8YowJVakJeV7QIa0NEQzSLnxCU4TYwxKQrjEt0XRdiEtq1kNn3Av1Cem7wWBsCzRDC64PKdIQ6TYDYYmQ8zjsUgPtIdnzps1wtK1T8nR99Xh5W9w_3NxdLu4LJ4Tqi0oaqWrPvG1KZf0Ztw0TtgZrLXhVu8ZxJ0vJq3kjwUrmHZeglPBzcKpxXkzJySZ3OPT1DXKvV-kN47BSl0rVksl5zQfV-UblMOWM4LULvRlf6NGEVnOmR6T6B6kekeot0sEtf7nXGDqDX__6Lja-EAd-nflI2Da6N19tQo8mupC1-DviGxnakas |
| CitedBy_id | crossref_primary_10_3390_math12172787 crossref_primary_10_1080_03610926_2025_2450779 crossref_primary_10_1080_03610926_2025_2503310 crossref_primary_10_2478_amns_2024_0138 crossref_primary_10_3390_w14223667 crossref_primary_10_3390_math10081283 |
| Cites_doi | 10.1080/03610918.2017.1395040 10.1080/03610926.2010.494809 10.1214/09-AOS729 10.1016/j.jmva.2011.08.018 10.1007/s00362-008-0192-6 10.1080/03610918.2012.659953 10.1214/12-AOS982 10.1080/01621459.1975.10479882 10.1214/07-AOS520 10.1080/03610920802470109 10.3934/jimo.2020128 10.1198/jasa.2008.tm08516 10.1007/s00362-016-0843-y 10.1016/j.apm.2017.11.011 10.1016/j.jmva.2015.01.002 10.1371/journal.pone.0245376 10.1016/j.csda.2017.08.002 10.1080/00949655.2010.519705 10.1080/00949655.2017.1328599 10.1214/009053604000000256 10.1007/s00500-021-05763-9 10.1007/s00362-017-0893-9 10.1111/insr.12351 10.1080/03610926.2017.1285928 10.1198/jasa.2009.tm08647 10.1146/annurev-statistics-022513-115545 10.1111/j.2517-6161.1996.tb02080.x 10.1080/01621459.1981.10477619 |
| ContentType | Journal Article |
| Copyright | 2021 Taylor & Francis Group, LLC 2021 2021 Taylor & Francis Group, LLC |
| Copyright_xml | – notice: 2021 Taylor & Francis Group, LLC 2021 – notice: 2021 Taylor & Francis Group, LLC |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1080/03610918.2021.1990323 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Mathematics Computer Science |
| EISSN | 1532-4141 |
| EndPage | 5445 |
| ExternalDocumentID | 10_1080_03610918_2021_1990323 1990323 |
| Genre | Research Article |
| GroupedDBID | -~X .7F .DC .QJ 0BK 0R~ 29F 2DF 30N 4.4 5GY 5VS 8VB AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABEHJ ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADXPE AEISY AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMVHM AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P K1G KYCEM LJTGL M4Z NA5 NY~ O9- P2P QWB RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ TWF UPT UT5 UU3 WH7 ZGOLN ZL0 ~S~ AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c338t-45a589f0fbd28bf71bd03b9ebbbef89cdc1c525146d5eb50fc15e883f6ec8dcf3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000707298500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0361-0918 |
| IngestDate | Wed Aug 13 08:58:06 EDT 2025 Sat Nov 29 03:27:21 EST 2025 Tue Nov 18 22:26:57 EST 2025 Mon Oct 20 23:45:10 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c338t-45a589f0fbd28bf71bd03b9ebbbef89cdc1c525146d5eb50fc15e883f6ec8dcf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8381-738X 0000-0003-0122-8384 |
| PQID | 2889505691 |
| PQPubID | 186203 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1080_03610918_2021_1990323 crossref_primary_10_1080_03610918_2021_1990323 proquest_journals_2889505691 informaworld_taylorfrancis_310_1080_03610918_2021_1990323 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-11-02 |
| PublicationDateYYYYMMDD | 2023-11-02 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | Philadelphia |
| PublicationPlace_xml | – name: Philadelphia |
| PublicationTitle | Communications in statistics. Simulation and computation |
| PublicationYear | 2023 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | e_1_3_1_22_1 e_1_3_1_23_1 e_1_3_1_24_1 e_1_3_1_25_1 e_1_3_1_9_1 e_1_3_1_20_1 e_1_3_1_21_1 e_1_3_1_5_1 e_1_3_1_4_1 e_1_3_1_7_1 e_1_3_1_6_1 e_1_3_1_26_1 e_1_3_1_27_1 e_1_3_1_3_1 e_1_3_1_28_1 e_1_3_1_2_1 e_1_3_1_29_1 Bertsimas D. (e_1_3_1_8_1) 1997 e_1_3_1_10_1 e_1_3_1_14_1 e_1_3_1_13_1 e_1_3_1_30_1 e_1_3_1_12_1 e_1_3_1_11_1 e_1_3_1_18_1 e_1_3_1_17_1 e_1_3_1_16_1 e_1_3_1_15_1 e_1_3_1_19_1 |
| References_xml | – ident: e_1_3_1_26_1 doi: 10.1080/03610918.2017.1395040 – ident: e_1_3_1_13_1 doi: 10.1080/03610926.2010.494809 – volume-title: Introduction to linear optimization year: 1997 ident: e_1_3_1_8_1 – ident: e_1_3_1_29_1 doi: 10.1214/09-AOS729 – ident: e_1_3_1_2_1 doi: 10.1016/j.jmva.2011.08.018 – ident: e_1_3_1_23_1 doi: 10.1007/s00362-008-0192-6 – ident: e_1_3_1_17_1 doi: 10.1080/03610918.2012.659953 – ident: e_1_3_1_22_1 doi: 10.1214/12-AOS982 – ident: e_1_3_1_15_1 doi: 10.1080/01621459.1975.10479882 – ident: e_1_3_1_30_1 doi: 10.1214/07-AOS520 – ident: e_1_3_1_4_1 doi: 10.1080/03610920802470109 – ident: e_1_3_1_21_1 doi: 10.3934/jimo.2020128 – ident: e_1_3_1_25_1 doi: 10.1198/jasa.2008.tm08516 – ident: e_1_3_1_5_1 doi: 10.1007/s00362-016-0843-y – ident: e_1_3_1_20_1 doi: 10.1016/j.apm.2017.11.011 – ident: e_1_3_1_18_1 doi: 10.1016/j.jmva.2015.01.002 – ident: e_1_3_1_6_1 doi: 10.1371/journal.pone.0245376 – ident: e_1_3_1_19_1 doi: 10.1016/j.csda.2017.08.002 – ident: e_1_3_1_14_1 doi: 10.1080/00949655.2010.519705 – ident: e_1_3_1_7_1 doi: 10.1080/00949655.2017.1328599 – ident: e_1_3_1_11_1 doi: 10.1214/009053604000000256 – ident: e_1_3_1_28_1 doi: 10.1007/s00500-021-05763-9 – ident: e_1_3_1_3_1 doi: 10.1007/s00362-017-0893-9 – ident: e_1_3_1_27_1 doi: 10.1111/insr.12351 – ident: e_1_3_1_10_1 doi: 10.1080/03610926.2017.1285928 – ident: e_1_3_1_16_1 doi: 10.1198/jasa.2009.tm08647 – ident: e_1_3_1_9_1 doi: 10.1146/annurev-statistics-022513-115545 – ident: e_1_3_1_24_1 doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: e_1_3_1_12_1 doi: 10.1080/01621459.1981.10477619 |
| SSID | ssj0003848 |
| Score | 2.3570733 |
| Snippet | Modern statistical studies often encounter regression models with high dimensions in which the number of features p is greater than the sample size n. Although... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5434 |
| SubjectTerms | Integer programming LASSO method Linear regression model Mixed-integer programming Regression models Riboflavin Sparsity Statistical analysis Statistical inference Variable selection |
| Title | A nonlinear mixed-integer programming approach for variable selection in linear regression model |
| URI | https://www.tandfonline.com/doi/abs/10.1080/03610918.2021.1990323 https://www.proquest.com/docview/2889505691 |
| Volume | 52 |
| WOSCitedRecordID | wos000707298500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals customDbUrl: eissn: 1532-4141 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003848 issn: 0361-0918 databaseCode: TFW dateStart: 19760101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYigDhQKiUJAHVkOcOKk9VoiKASqGIrqF-IUq0QolpeLn43OcigqhDvADzvHjntHd9yF0KTIVWxFnJIMShbG-JgVTjDBXaGsZAf6JHxS-749GfDIRj6GbsAptlVBD2xoowvtqMO5CVk1H3LVzugBnCY1ZMYVxuyiJAe_ThX4wzfHweeWLE-75s0CCgEgzw_PbKmvRaQ279Iev9gFo2P6Hre-jvZB94kGtLgdoy8w7qN0wO-Bg6B20-7BCc606qAUZaQ3ofIheBnhef7oo8Wz6aTTxkBNOPPR6zVw0xA1WOXZnw0tXkMOIFq48645TBTyd47BGaV7rXtw59rQ8R-hpeDu-uSOBpoEoV98uCEuLlAsbWaljLm2fSh0lUhgppbFcKK2oSl0axTKdGplGVtHUcJ7YzCiulU2O0bbbuDlBWGopbQGQNNSwQnGemcypDzMp1dZQ3kWseZ5cBQxzoNJ4y2kDdRouOIcLzsMFd9HVSuy9BvHYJCC-v32-8H9PbE11kicbZHuNouTBH1R5zLmAXFPQ0z8sfYZawHbvRyHjHtpelB_mHO2opdOB8sJr_hdA_P-P |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEB58gXrwURXf5uB1dbOb3SZHEYti7amit7h5SUGLtFX8-Way2aKIeNDzMkk2mcwjzHwfwLEodeZEViYlpiiMtU1SMc0S5hNto1LEPwmNwt12r8fv78XnXhgsq8Qc2tVAEcFW4-XGx-imJO7UW13Es8TKrIxiv12aZ_kszBfe1yJ-fr9zN7XGOQ8MWiiSoEzTxfPTMF_80xf00m_WOrigzup_LH4NVmIASs5qjVmHGTtswWpD7kDiXW_B8s0U0HXcgiUMSmtM5w14OCPDeu5qRJ4H79YkAXXCi8dyr2fvEEkDV078z5E3n5NjlxYZB-Idrw1kMCRxjJF9rMtxhyQw82zCbeeif36ZRKaGRPsUd5Kwoiq4cKlTJuPKtakyaa6EVUpZx4U2murCR1KsNIVVReo0LSznuSut5ka7fAvm_MLtNhBllHIVotJQyyrNeWlLr0HMFtQ4S_kOsOZ8pI4w5sim8SRpg3YaN1jiBsu4wTtwMhV7qXE8fhMQnw9fTsIDiqvZTmT-i-x-oykymoSxzDgXGG4KuvuHoY9g8bJ_05Xdq971Hiz5T3nojMz2YW4yerUHsKDfvD6MDsM1-ABvYAPI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLZgIDQOPAaI8cyBa6Fp0y45ImACAdMOQ3ALzQtNggmtY-Lnk6TpBEKIA5wru6njOHZlfx_AEctlYliSR7krUQjpqKggkkTEFtpKxA7_xA8K33R6PfrwwPqhm7AMbZWuhjYVUISP1e5wvypTd8Sd2KDr4CxdY1aC3bhdnCbpPCzY1Dl3Tj7o3s-CcUo9gZYTiZxMPcTzk5ov19MX8NJvwdrfQN3Vf1j7GqyE9BOdVv6yDnN61ILVmtoBhZPeguXbGZxr2YKmS0krROcNeDxFo-rVxRi9DN-1ijzmhBUPzV4v9jpENVg5st-GprYidzNaqPS0O9YX0HCEgo6xfqqacUfI8_Jswl33YnB2GQWehkjaAncSkazIKDOxESqhwnSwUHEqmBZCaEOZVBLLzOZRJFeZFllsJM40panJtaRKmnQLGnbhehuQUEKYwmHSYE0KSWmuc-s_RGdYGY1pG0i9PVwGEHPHpfHMcY11GgzMnYF5MHAbjmdirxWKx28C7PPe84n_fWIqrhOe_iK7VzsKDwGh5AmlzCWbDO_8QfUhLPXPu_zmqne9C037JPVjkckeNCbjN70Pi3Jq3WF84A_BB1nwAno |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+nonlinear+mixed%E2%80%93integer+programming+approach+for+variable+selection+in+linear+regression+model&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=Mahdi+Roozbeh&rft.au=Saman+Babaie%E2%80%93Kafaki&rft.au=Aminifard%2C+Zohre&rft.date=2023-11-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0361-0918&rft.eissn=1532-4141&rft.volume=52&rft.issue=11&rft.spage=5434&rft.epage=5445&rft_id=info:doi/10.1080%2F03610918.2021.1990323&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon |