A nonlinear mixed-integer programming approach for variable selection in linear regression model

Modern statistical studies often encounter regression models with high dimensions in which the number of features p is greater than the sample size n. Although the theory of linear models is well-established for the traditional assumption p < n, making valid statistical inference in high dimensio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in statistics. Simulation and computation Jg. 52; H. 11; S. 5434 - 5445
Hauptverfasser: Roozbeh, Mahdi, Babaie-Kafaki, Saman, Aminifard, Zohre
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Philadelphia Taylor & Francis 02.11.2023
Taylor & Francis Ltd
Schlagworte:
ISSN:0361-0918, 1532-4141
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Modern statistical studies often encounter regression models with high dimensions in which the number of features p is greater than the sample size n. Although the theory of linear models is well-established for the traditional assumption p < n, making valid statistical inference in high dimensional cases is a considerable challenge. With recent advances in technologies, the problem appears in many biological, medical, social, industrial, and economic studies. As known, the LASSO method is a popular technique for variable selection/estimation in high dimensional sparse linear models. Here, we show that the prediction performance of the LASSO method can be improved by eliminating the structured noises through a mixed-integer programming approach. As a result of our analysis, a modified variable selection/estimation scheme is proposed for a high dimensional regression model which can be considered as an alternative of the LASSO method. Some numerical experiments are made on the classical riboflavin production and some simulated data sets to shed light on the practical performance of the suggested method.
AbstractList Modern statistical studies often encounter regression models with high dimensions in which the number of features p is greater than the sample size n. Although the theory of linear models is well–established for the traditional assumption p < n, making valid statistical inference in high dimensional cases is a considerable challenge. With recent advances in technologies, the problem appears in many biological, medical, social, industrial, and economic studies. As known, the LASSO method is a popular technique for variable selection/estimation in high dimensional sparse linear models. Here, we show that the prediction performance of the LASSO method can be improved by eliminating the structured noises through a mixed–integer programming approach. As a result of our analysis, a modified variable selection/estimation scheme is proposed for a high dimensional regression model which can be considered as an alternative of the LASSO method. Some numerical experiments are made on the classical riboflavin production and some simulated data sets to shed light on the practical performance of the suggested method.
Author Babaie-Kafaki, Saman
Roozbeh, Mahdi
Aminifard, Zohre
Author_xml – sequence: 1
  givenname: Mahdi
  orcidid: 0000-0001-8381-738X
  surname: Roozbeh
  fullname: Roozbeh, Mahdi
  organization: Faculty of Mathematics, Statistics and Computer Science, Semnan University
– sequence: 2
  givenname: Saman
  orcidid: 0000-0003-0122-8384
  surname: Babaie-Kafaki
  fullname: Babaie-Kafaki, Saman
  organization: Faculty of Mathematics, Statistics and Computer Science, Semnan University
– sequence: 3
  givenname: Zohre
  surname: Aminifard
  fullname: Aminifard, Zohre
  organization: Faculty of Mathematics, Statistics and Computer Science, Semnan University
BookMark eNqFkE1LxDAQhoMouK7-BCHguWvSNGuKFxfxCwQveo5JOlmztMk6qV__3pZdLx70NMzwvu_MPAdkN6YIhBxzNuNMsVMm5pzVXM1KVvIZr2smSrFDJlyKsqh4xXfJZNQUo2ifHOS8YowJVakJeV7QIa0NEQzSLnxCU4TYwxKQrjEt0XRdiEtq1kNn3Av1Cem7wWBsCzRDC64PKdIQ6TYDYYmQ8zjsUgPtIdnzps1wtK1T8nR99Xh5W9w_3NxdLu4LJ4Tqi0oaqWrPvG1KZf0Ztw0TtgZrLXhVu8ZxJ0vJq3kjwUrmHZeglPBzcKpxXkzJySZ3OPT1DXKvV-kN47BSl0rVksl5zQfV-UblMOWM4LULvRlf6NGEVnOmR6T6B6kekeot0sEtf7nXGDqDX__6Lja-EAd-nflI2Da6N19tQo8mupC1-DviGxnakas
CitedBy_id crossref_primary_10_3390_math12172787
crossref_primary_10_1080_03610926_2025_2450779
crossref_primary_10_1080_03610926_2025_2503310
crossref_primary_10_2478_amns_2024_0138
crossref_primary_10_3390_w14223667
crossref_primary_10_3390_math10081283
Cites_doi 10.1080/03610918.2017.1395040
10.1080/03610926.2010.494809
10.1214/09-AOS729
10.1016/j.jmva.2011.08.018
10.1007/s00362-008-0192-6
10.1080/03610918.2012.659953
10.1214/12-AOS982
10.1080/01621459.1975.10479882
10.1214/07-AOS520
10.1080/03610920802470109
10.3934/jimo.2020128
10.1198/jasa.2008.tm08516
10.1007/s00362-016-0843-y
10.1016/j.apm.2017.11.011
10.1016/j.jmva.2015.01.002
10.1371/journal.pone.0245376
10.1016/j.csda.2017.08.002
10.1080/00949655.2010.519705
10.1080/00949655.2017.1328599
10.1214/009053604000000256
10.1007/s00500-021-05763-9
10.1007/s00362-017-0893-9
10.1111/insr.12351
10.1080/03610926.2017.1285928
10.1198/jasa.2009.tm08647
10.1146/annurev-statistics-022513-115545
10.1111/j.2517-6161.1996.tb02080.x
10.1080/01621459.1981.10477619
ContentType Journal Article
Copyright 2021 Taylor & Francis Group, LLC 2021
2021 Taylor & Francis Group, LLC
Copyright_xml – notice: 2021 Taylor & Francis Group, LLC 2021
– notice: 2021 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/03610918.2021.1990323
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1532-4141
EndPage 5445
ExternalDocumentID 10_1080_03610918_2021_1990323
1990323
Genre Research Article
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
8VB
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADXPE
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
K1G
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
P2P
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
TWF
UPT
UT5
UU3
WH7
ZGOLN
ZL0
~S~
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c338t-45a589f0fbd28bf71bd03b9ebbbef89cdc1c525146d5eb50fc15e883f6ec8dcf3
IEDL.DBID TFW
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000707298500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0361-0918
IngestDate Wed Aug 13 08:58:06 EDT 2025
Sat Nov 29 03:27:21 EST 2025
Tue Nov 18 22:26:57 EST 2025
Mon Oct 20 23:45:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-45a589f0fbd28bf71bd03b9ebbbef89cdc1c525146d5eb50fc15e883f6ec8dcf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8381-738X
0000-0003-0122-8384
PQID 2889505691
PQPubID 186203
PageCount 12
ParticipantIDs crossref_citationtrail_10_1080_03610918_2021_1990323
crossref_primary_10_1080_03610918_2021_1990323
proquest_journals_2889505691
informaworld_taylorfrancis_310_1080_03610918_2021_1990323
PublicationCentury 2000
PublicationDate 2023-11-02
PublicationDateYYYYMMDD 2023-11-02
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-02
  day: 02
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Communications in statistics. Simulation and computation
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_1_22_1
e_1_3_1_23_1
e_1_3_1_24_1
e_1_3_1_25_1
e_1_3_1_9_1
e_1_3_1_20_1
e_1_3_1_21_1
e_1_3_1_5_1
e_1_3_1_4_1
e_1_3_1_7_1
e_1_3_1_6_1
e_1_3_1_26_1
e_1_3_1_27_1
e_1_3_1_3_1
e_1_3_1_28_1
e_1_3_1_2_1
e_1_3_1_29_1
Bertsimas D. (e_1_3_1_8_1) 1997
e_1_3_1_10_1
e_1_3_1_14_1
e_1_3_1_13_1
e_1_3_1_30_1
e_1_3_1_12_1
e_1_3_1_11_1
e_1_3_1_18_1
e_1_3_1_17_1
e_1_3_1_16_1
e_1_3_1_15_1
e_1_3_1_19_1
References_xml – ident: e_1_3_1_26_1
  doi: 10.1080/03610918.2017.1395040
– ident: e_1_3_1_13_1
  doi: 10.1080/03610926.2010.494809
– volume-title: Introduction to linear optimization
  year: 1997
  ident: e_1_3_1_8_1
– ident: e_1_3_1_29_1
  doi: 10.1214/09-AOS729
– ident: e_1_3_1_2_1
  doi: 10.1016/j.jmva.2011.08.018
– ident: e_1_3_1_23_1
  doi: 10.1007/s00362-008-0192-6
– ident: e_1_3_1_17_1
  doi: 10.1080/03610918.2012.659953
– ident: e_1_3_1_22_1
  doi: 10.1214/12-AOS982
– ident: e_1_3_1_15_1
  doi: 10.1080/01621459.1975.10479882
– ident: e_1_3_1_30_1
  doi: 10.1214/07-AOS520
– ident: e_1_3_1_4_1
  doi: 10.1080/03610920802470109
– ident: e_1_3_1_21_1
  doi: 10.3934/jimo.2020128
– ident: e_1_3_1_25_1
  doi: 10.1198/jasa.2008.tm08516
– ident: e_1_3_1_5_1
  doi: 10.1007/s00362-016-0843-y
– ident: e_1_3_1_20_1
  doi: 10.1016/j.apm.2017.11.011
– ident: e_1_3_1_18_1
  doi: 10.1016/j.jmva.2015.01.002
– ident: e_1_3_1_6_1
  doi: 10.1371/journal.pone.0245376
– ident: e_1_3_1_19_1
  doi: 10.1016/j.csda.2017.08.002
– ident: e_1_3_1_14_1
  doi: 10.1080/00949655.2010.519705
– ident: e_1_3_1_7_1
  doi: 10.1080/00949655.2017.1328599
– ident: e_1_3_1_11_1
  doi: 10.1214/009053604000000256
– ident: e_1_3_1_28_1
  doi: 10.1007/s00500-021-05763-9
– ident: e_1_3_1_3_1
  doi: 10.1007/s00362-017-0893-9
– ident: e_1_3_1_27_1
  doi: 10.1111/insr.12351
– ident: e_1_3_1_10_1
  doi: 10.1080/03610926.2017.1285928
– ident: e_1_3_1_16_1
  doi: 10.1198/jasa.2009.tm08647
– ident: e_1_3_1_9_1
  doi: 10.1146/annurev-statistics-022513-115545
– ident: e_1_3_1_24_1
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: e_1_3_1_12_1
  doi: 10.1080/01621459.1981.10477619
SSID ssj0003848
Score 2.3570733
Snippet Modern statistical studies often encounter regression models with high dimensions in which the number of features p is greater than the sample size n. Although...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5434
SubjectTerms Integer programming
LASSO method
Linear regression model
Mixed-integer programming
Regression models
Riboflavin
Sparsity
Statistical analysis
Statistical inference
Variable selection
Title A nonlinear mixed-integer programming approach for variable selection in linear regression model
URI https://www.tandfonline.com/doi/abs/10.1080/03610918.2021.1990323
https://www.proquest.com/docview/2889505691
Volume 52
WOSCitedRecordID wos000707298500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals
  customDbUrl:
  eissn: 1532-4141
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003848
  issn: 0361-0918
  databaseCode: TFW
  dateStart: 19760101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYigDhQKiUJAHVkOcOKk9VoiKASqGIrqF-IUq0QolpeLn43OcigqhDvADzvHjntHd9yF0KTIVWxFnJIMShbG-JgVTjDBXaGsZAf6JHxS-749GfDIRj6GbsAptlVBD2xoowvtqMO5CVk1H3LVzugBnCY1ZMYVxuyiJAe_ThX4wzfHweeWLE-75s0CCgEgzw_PbKmvRaQ279Iev9gFo2P6Hre-jvZB94kGtLgdoy8w7qN0wO-Bg6B20-7BCc606qAUZaQ3ofIheBnhef7oo8Wz6aTTxkBNOPPR6zVw0xA1WOXZnw0tXkMOIFq48645TBTyd47BGaV7rXtw59rQ8R-hpeDu-uSOBpoEoV98uCEuLlAsbWaljLm2fSh0lUhgppbFcKK2oSl0axTKdGplGVtHUcJ7YzCiulU2O0bbbuDlBWGopbQGQNNSwQnGemcypDzMp1dZQ3kWseZ5cBQxzoNJ4y2kDdRouOIcLzsMFd9HVSuy9BvHYJCC-v32-8H9PbE11kicbZHuNouTBH1R5zLmAXFPQ0z8sfYZawHbvRyHjHtpelB_mHO2opdOB8sJr_hdA_P-P
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEB58gXrwURXf5uB1dbOb3SZHEYti7amit7h5SUGLtFX8-Way2aKIeNDzMkk2mcwjzHwfwLEodeZEViYlpiiMtU1SMc0S5hNto1LEPwmNwt12r8fv78XnXhgsq8Qc2tVAEcFW4-XGx-imJO7UW13Es8TKrIxiv12aZ_kszBfe1yJ-fr9zN7XGOQ8MWiiSoEzTxfPTMF_80xf00m_WOrigzup_LH4NVmIASs5qjVmHGTtswWpD7kDiXW_B8s0U0HXcgiUMSmtM5w14OCPDeu5qRJ4H79YkAXXCi8dyr2fvEEkDV078z5E3n5NjlxYZB-Idrw1kMCRxjJF9rMtxhyQw82zCbeeif36ZRKaGRPsUd5Kwoiq4cKlTJuPKtakyaa6EVUpZx4U2murCR1KsNIVVReo0LSznuSut5ka7fAvm_MLtNhBllHIVotJQyyrNeWlLr0HMFtQ4S_kOsOZ8pI4w5sim8SRpg3YaN1jiBsu4wTtwMhV7qXE8fhMQnw9fTsIDiqvZTmT-i-x-oykymoSxzDgXGG4KuvuHoY9g8bJ_05Xdq971Hiz5T3nojMz2YW4yerUHsKDfvD6MDsM1-ABvYAPI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLZgIDQOPAaI8cyBa6Fp0y45ImACAdMOQ3ALzQtNggmtY-Lnk6TpBEKIA5wru6njOHZlfx_AEctlYliSR7krUQjpqKggkkTEFtpKxA7_xA8K33R6PfrwwPqhm7AMbZWuhjYVUISP1e5wvypTd8Sd2KDr4CxdY1aC3bhdnCbpPCzY1Dl3Tj7o3s-CcUo9gZYTiZxMPcTzk5ov19MX8NJvwdrfQN3Vf1j7GqyE9BOdVv6yDnN61ILVmtoBhZPeguXbGZxr2YKmS0krROcNeDxFo-rVxRi9DN-1ijzmhBUPzV4v9jpENVg5st-GprYidzNaqPS0O9YX0HCEgo6xfqqacUfI8_Jswl33YnB2GQWehkjaAncSkazIKDOxESqhwnSwUHEqmBZCaEOZVBLLzOZRJFeZFllsJM40panJtaRKmnQLGnbhehuQUEKYwmHSYE0KSWmuc-s_RGdYGY1pG0i9PVwGEHPHpfHMcY11GgzMnYF5MHAbjmdirxWKx28C7PPe84n_fWIqrhOe_iK7VzsKDwGh5AmlzCWbDO_8QfUhLPXPu_zmqne9C037JPVjkckeNCbjN70Pi3Jq3WF84A_BB1nwAno
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+nonlinear+mixed%E2%80%93integer+programming+approach+for+variable+selection+in+linear+regression+model&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=Mahdi+Roozbeh&rft.au=Saman+Babaie%E2%80%93Kafaki&rft.au=Aminifard%2C+Zohre&rft.date=2023-11-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0361-0918&rft.eissn=1532-4141&rft.volume=52&rft.issue=11&rft.spage=5434&rft.epage=5445&rft_id=info:doi/10.1080%2F03610918.2021.1990323&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon