Kernel-endoregular modules and the morphic property
This paper describes properties of three certain classes of modules M over a ring R determined by conditions on isomorphic direct summands ( ≲ ⊕ ): The condition that whenever ( I m λ ≅ ) M / Ker λ ≲ ⊕ M then Ker λ and I m λ are direct summands of M for any endomorphism λ ∈ End ( M ) (kernel-endoreg...
Uloženo v:
| Vydáno v: | Communications in algebra Ročník 52; číslo 5; s. 1818 - 1825 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Abingdon
Taylor & Francis
03.05.2024
Taylor & Francis Ltd |
| Témata: | |
| ISSN: | 0092-7872, 1532-4125 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper describes properties of three certain classes of modules M over a ring R determined by conditions on isomorphic direct summands (
≲
⊕
):
The condition that whenever
(
I
m
λ
≅
)
M
/
Ker
λ
≲
⊕
M
then
Ker
λ
and
I
m
λ
are direct summands of M for any endomorphism
λ
∈
End
(
M
)
(kernel-endoregular modules).
The condition that if
M
/
A
≅
B
where A,
B
≲
⊕
M
then
M
/
B
≅
A
(iso-summand-morphic modules).
The condition if
M
/
A
≅
B
where A,
B
≤
⊕
M
, then
M
/
B
≅
A
(summand-morphic modules) which is precisely the internal cancellation property for modules. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0092-7872 1532-4125 |
| DOI: | 10.1080/00927872.2023.2274951 |