Robust Multivariate Lasso Regression with Covariance Estimation

Multivariate regression with covariance estimation (MRCE) is a method that performs sparse estimation of multivariate regression coefficients, while taking account the covariance structure of the response variables. MRCE uses a penalized likelihood approach to simultaneously estimate the regression...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computational and graphical statistics Ročník 32; číslo 3; s. 961 - 973
Hlavní autoři: Chang, Le, Welsh, A. H.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Alexandria Taylor & Francis 03.07.2023
Taylor & Francis Ltd
Témata:
ISSN:1061-8600, 1537-2715
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Multivariate regression with covariance estimation (MRCE) is a method that performs sparse estimation of multivariate regression coefficients, while taking account the covariance structure of the response variables. MRCE uses a penalized likelihood approach to simultaneously estimate the regression coefficients and the inverse covariance matrix so that prediction accuracy can be significantly improved. However, traditional likelihood-based methods such as MRCE can produce very misleading results in the presence of outliers. In this work, we propose an extension of MRCE, namely, a robust multivariate lasso regression with covariance estimation (RMLC) to handle potential outliers within the data. By using Huber's loss or Tukey's biweight loss, RMLC can be resistant to outliers in the responses or in both the responses and the covariates. A novel optimization algorithm that incorporates a 2-fold accelerated proximal gradient (APG) algorithm is developed to solve RMLC efficiently. We also demonstrate that our proposed RMLC enjoys the oracle property. Our simulation study shows that RMLC produces very reliable results for both the regression coefficients and the correlation structure of the responses, even if the data are contaminated. A real analysis on hyperspectral data further demonstrates the utility of RMLC. Supplementary materials for this article are available online.
AbstractList Multivariate regression with covariance estimation (MRCE) is a method that performs sparse estimation of multivariate regression coefficients, while taking account the covariance structure of the response variables. MRCE uses a penalized likelihood approach to simultaneously estimate the regression coefficients and the inverse covariance matrix so that prediction accuracy can be significantly improved. However, traditional likelihood-based methods such as MRCE can produce very misleading results in the presence of outliers. In this work, we propose an extension of MRCE, namely, a robust multivariate lasso regression with covariance estimation (RMLC) to handle potential outliers within the data. By using Huber's loss or Tukey's biweight loss, RMLC can be resistant to outliers in the responses or in both the responses and the covariates. A novel optimization algorithm that incorporates a 2-fold accelerated proximal gradient (APG) algorithm is developed to solve RMLC efficiently. We also demonstrate that our proposed RMLC enjoys the oracle property. Our simulation study shows that RMLC produces very reliable results for both the regression coefficients and the correlation structure of the responses, even if the data are contaminated. A real analysis on hyperspectral data further demonstrates the utility of RMLC. Supplementary materials for this article are available online.
Multivariate regression with covariance estimation (MRCE) is a method that performs sparse estimation of multivariate regression coefficients, while taking account the covariance structure of the response variables. MRCE uses a penalized likelihood approach to simultaneously estimate the regression coefficients and the inverse covariance matrix so that prediction accuracy can be significantly improved. However, traditional likelihood-based methods such as MRCE can produce very misleading results in the presence of outliers. In this work, we propose an extension of MRCE, namely, a robust multivariate lasso regression with covariance estimation (RMLC) to handle potential outliers within the data. By using Huber’s loss or Tukey’s biweight loss, RMLC can be resistant to outliers in the responses or in both the responses and the covariates. A novel optimization algorithm that incorporates a 2-fold accelerated proximal gradient (APG) algorithm is developed to solve RMLC efficiently. We also demonstrate that our proposed RMLC enjoys the oracle property. Our simulation study shows that RMLC produces very reliable results for both the regression coefficients and the correlation structure of the responses, even if the data are contaminated. A real analysis on hyperspectral data further demonstrates the utility of RMLC. Supplementary materials for this article are available online.
Author Chang, Le
Welsh, A. H.
Author_xml – sequence: 1
  givenname: Le
  orcidid: 0000-0001-6045-9727
  surname: Chang
  fullname: Chang, Le
  organization: Research School of Finance, Actuarial Studies, and Statistics, Australian National University
– sequence: 2
  givenname: A. H.
  orcidid: 0000-0002-3165-9559
  surname: Welsh
  fullname: Welsh, A. H.
  organization: Research School of Finance, Actuarial Studies, and Statistics, Australian National University
BookMark eNqFkE9LAzEQxYNUsK1-BGHB89aZpLvZ4kGl1D9QEYqeQzab1ZTtpiZZS7-9aasXD3qagXlv5s1vQHqtbTUh5wgjhAIuEXIscoARBUpHFLHgGT0ifcwYTynHrBf7qEl3ohMy8H4JAJhPeJ9cL2zZ-ZA8dU0wn9IZGXQyl97bZKHfnPbe2DbZmPCeTO1-3iqdzHwwKxni6JQc17Lx-uy7Dsnr3exl-pDOn-8fp7fzVDFWhJRNUIGWQFEypvOqBlWxCjgWtFQ5z7MMeMW44ljSvGTIkMeEoItClaxGZENycdi7dvaj0z6Ipe1cG08KWuRjNsk4G0fV1UGlnPXe6VooE_Y5g5OmEQhiR0z8EBM7YuKbWHRnv9xrF9902399NwefaWvrVnJjXVOJILeNdbWLwIwX7O8VX_pvgqc
CitedBy_id crossref_primary_10_1002_wics_70021
crossref_primary_10_3390_sym15122155
crossref_primary_10_3390_horticulturae10121321
crossref_primary_10_1007_s42081_025_00312_2
Cites_doi 10.1214/07-AOAS131
10.1016/j.csda.2015.02.005
10.1137/080716542
10.1214/aos/1176350366
10.1002/cpa.20042
10.1198/073500106000000251
10.1198/TECH.2010.09114
10.1093/biomet/asm018
10.1111/rssb.12033
10.1214/18-EJS1427
10.1198/016214506000000735
10.1016/j.agrformet.2019.03.020
10.1214/11-EJS635
10.1093/biostatistics/kxm045
10.1016/j.jmva.2012.03.013
10.1214/07-AOS588
10.1017/CBO9780511804458.003
10.1007/978-3-319-22404-6_19
10.1214/088342307000000087
10.1016/j.csda.2017.02.002
10.1007/978-1-4615-7821-5_15
10.1090/conm/443/08555
10.1080/00401706.2017.1305299
10.1016/j.csda.2021.107315
10.1214/08-AOS625
10.1198/016214501753382273
10.1198/004017004000000329
10.1198/jcgs.2010.09188
10.1016/0034-4257(92)90059-S
10.1093/biomet/81.3.425
10.1137/0601049
10.1111/j.2517-6161.1996.tb02080.x
10.5705/ss.2013.192
10.1214/12-AOAS575
10.1214/aoms/1177703732
10.1214/11-AOAS494
ContentType Journal Article
Copyright 2022 American Statistical Association and Institute of Mathematical Statistics 2022
2022 American Statistical Association and Institute of Mathematical Statistics
Copyright_xml – notice: 2022 American Statistical Association and Institute of Mathematical Statistics 2022
– notice: 2022 American Statistical Association and Institute of Mathematical Statistics
DBID AAYXX
CITATION
JQ2
DOI 10.1080/10618600.2022.2118752
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1537-2715
EndPage 973
ExternalDocumentID 10_1080_10618600_2022_2118752
2118752
Genre Research Article
GroupedDBID -~X
.4S
.7F
.DC
.QJ
0BK
0R~
30N
4.4
5GY
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACIWK
ACMTB
ACTIO
ACTMH
ADCVX
ADGTB
AEGXH
AELLO
AENEX
AEOZL
AEPSL
AEYOC
AFRVT
AFVYC
AGDLA
AGMYJ
AHDZW
AIAGR
AIJEM
AKBRZ
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CS3
D0L
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
JAA
KYCEM
LJTGL
M4Z
MS~
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SNACF
TAE
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TUS
UT5
UU3
WZA
XWC
ZGOLN
~S~
AAYXX
CITATION
JQ2
ID FETCH-LOGICAL-c338t-391c0ea021a33e6df0cd3d07182bc6765507d37c71b26b313170010e88cb3f113
IEDL.DBID TFW
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000876591400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1061-8600
IngestDate Thu Oct 16 01:25:24 EDT 2025
Thu Oct 16 04:38:52 EDT 2025
Tue Nov 18 20:48:58 EST 2025
Mon Oct 20 23:45:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-391c0ea021a33e6df0cd3d07182bc6765507d37c71b26b313170010e88cb3f113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6045-9727
0000-0002-3165-9559
PQID 2864395734
PQPubID 29738
PageCount 13
ParticipantIDs informaworld_taylorfrancis_310_1080_10618600_2022_2118752
proquest_journals_2864395734
crossref_citationtrail_10_1080_10618600_2022_2118752
crossref_primary_10_1080_10618600_2022_2118752
PublicationCentury 2000
PublicationDate 2023-07-03
PublicationDateYYYYMMDD 2023-07-03
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-03
  day: 03
PublicationDecade 2020
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle Journal of computational and graphical statistics
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_3_30_1
Rousseeuw P. J. (e_1_3_3_29_1) 2005
e_1_3_3_18_1
e_1_3_3_17_1
e_1_3_3_39_1
e_1_3_3_19_1
e_1_3_3_14_1
e_1_3_3_37_1
e_1_3_3_13_1
e_1_3_3_38_1
e_1_3_3_16_1
e_1_3_3_35_1
e_1_3_3_15_1
e_1_3_3_36_1
e_1_3_3_10_1
e_1_3_3_33_1
e_1_3_3_31_1
e_1_3_3_11_1
e_1_3_3_32_1
e_1_3_3_40_1
e_1_3_3_41_1
Banerjee O. (e_1_3_3_4_1) 2008; 9
e_1_3_3_7_1
e_1_3_3_6_1
e_1_3_3_9_1
e_1_3_3_8_1
e_1_3_3_28_1
Freue G. V. C. (e_1_3_3_12_1) 2019; 13
e_1_3_3_25_1
e_1_3_3_24_1
e_1_3_3_27_1
e_1_3_3_3_1
e_1_3_3_21_1
Rolfs B. (e_1_3_3_26_1) 2012
Van Aelst S. (e_1_3_3_34_1) 2005; 15
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_5_1
e_1_3_3_23_1
e_1_3_3_42_1
e_1_3_3_22_1
References_xml – ident: e_1_3_3_13_1
  doi: 10.1214/07-AOAS131
– ident: e_1_3_3_32_1
  doi: 10.1016/j.csda.2015.02.005
– ident: e_1_3_3_5_1
  doi: 10.1137/080716542
– ident: e_1_3_3_39_1
  doi: 10.1214/aos/1176350366
– ident: e_1_3_3_9_1
  doi: 10.1002/cpa.20042
– volume-title: Robust Regression and Outlier Detection
  year: 2005
  ident: e_1_3_3_29_1
– ident: e_1_3_3_35_1
  doi: 10.1198/073500106000000251
– ident: e_1_3_3_22_1
  doi: 10.1198/TECH.2010.09114
– ident: e_1_3_3_40_1
  doi: 10.1093/biomet/asm018
– ident: e_1_3_3_8_1
  doi: 10.1111/rssb.12033
– ident: e_1_3_3_20_1
  doi: 10.1214/18-EJS1427
– ident: e_1_3_3_41_1
  doi: 10.1198/016214506000000735
– ident: e_1_3_3_37_1
  doi: 10.1016/j.agrformet.2019.03.020
– ident: e_1_3_3_18_1
  doi: 10.1214/11-EJS635
– ident: e_1_3_3_14_1
  doi: 10.1093/biostatistics/kxm045
– ident: e_1_3_3_19_1
  doi: 10.1016/j.jmva.2012.03.013
– ident: e_1_3_3_3_1
  doi: 10.1214/07-AOS588
– volume: 9
  start-page: 485
  year: 2008
  ident: e_1_3_3_4_1
  article-title: “Model Selection through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data
  publication-title: Journal of Machine Learning Research
– ident: e_1_3_3_6_1
  doi: 10.1017/CBO9780511804458.003
– ident: e_1_3_3_24_1
  doi: 10.1007/978-3-319-22404-6_19
– volume: 13
  start-page: 2065
  year: 2019
  ident: e_1_3_3_12_1
  article-title: “Robust Elastic Net Estimators for Variable Selection and Identification of Proteomic Biomarkers
  publication-title: The Annals of Applied Statistics
– start-page: 1574
  year: 2012
  ident: e_1_3_3_26_1
  article-title: “Iterative Thresholding Algorithm for Sparse Inverse Covariance Estimation
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_3_3_17_1
  doi: 10.1214/088342307000000087
– ident: e_1_3_3_31_1
  doi: 10.1016/j.csda.2017.02.002
– ident: e_1_3_3_28_1
  doi: 10.1007/978-1-4615-7821-5_15
– ident: e_1_3_3_25_1
  doi: 10.1090/conm/443/08555
– ident: e_1_3_3_7_1
  doi: 10.1080/00401706.2017.1305299
– ident: e_1_3_3_23_1
  doi: 10.1016/j.csda.2021.107315
– ident: e_1_3_3_42_1
  doi: 10.1214/08-AOS625
– ident: e_1_3_3_11_1
  doi: 10.1198/016214501753382273
– ident: e_1_3_3_30_1
  doi: 10.1198/004017004000000329
– volume: 15
  start-page: 981
  year: 2005
  ident: e_1_3_3_34_1
  article-title: “Multivariate Regression s-estimators for Robust Estimation and Inference
  publication-title: Statistica Sinica
– ident: e_1_3_3_27_1
  doi: 10.1198/jcgs.2010.09188
– ident: e_1_3_3_15_1
  doi: 10.1016/0034-4257(92)90059-S
– ident: e_1_3_3_10_1
  doi: 10.1093/biomet/81.3.425
– ident: e_1_3_3_21_1
  doi: 10.1137/0601049
– ident: e_1_3_3_33_1
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: e_1_3_3_36_1
  doi: 10.5705/ss.2013.192
– ident: e_1_3_3_2_1
  doi: 10.1214/12-AOAS575
– ident: e_1_3_3_16_1
  doi: 10.1214/aoms/1177703732
– ident: e_1_3_3_38_1
  doi: 10.1214/11-AOAS494
SSID ssj0001697
Score 2.393826
Snippet Multivariate regression with covariance estimation (MRCE) is a method that performs sparse estimation of multivariate regression coefficients, while taking...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 961
SubjectTerms Algorithms
Covariance matrix
Graphical lasso
Lasso
Multivariate analysis
Multivariate regression
Optimization
Oracal property
Outliers (statistics)
Proximal gradient algorithm
Regression coefficients
Robust estimation
Robustness (mathematics)
Title Robust Multivariate Lasso Regression with Covariance Estimation
URI https://www.tandfonline.com/doi/abs/10.1080/10618600.2022.2118752
https://www.proquest.com/docview/2864395734
Volume 32
WOSCitedRecordID wos000876591400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1537-2715
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001697
  issn: 1061-8600
  databaseCode: TFW
  dateStart: 19920301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA1SPNSDH1WxWiUHr1u7SfbrJFJaPGiRUrG3sMluvMhWutv-fmey2WIR6UHPy4RlMpl5EybvEXIbptDdQBnxTB4IT4Qs8ZJAQSybNBHCxJnJhBWbiCaTeD5PXtw0YenGKrGHNjVRhM3VeLhTVTYTcXfYxcRQqKG7Y6zPUDA7wCwMpR81DGbjt00u9p28Clh4aNK84fltla3qtMVd-iNX2wI0PvqHXz8mhw590oc6XE7IXl50yMHzhrq17JA2ws-avfmU3E8XalVW1D7TXUNbDciUPgHeXtBp_l6P0BYU73LpcGG_QwzREVjXLyLPyOt4NBs-ek5ywdPQq1YeT3w9yFMo_CnneZiZgc54BjAkZkqHUYjsZxmPdOQrFiruc6T38wd5HGvFje_zc9IqFkV-QSgLoZVCXXqmhcgA97BMxcIwhZeOTAVdIhpXS-34yFEW40P6jra0cZZEZ0nnrC7pb8w-a0KOXQbJ932Ulb0JMbVsieQ7bHvNpkt3tkvJYkRxQcTF5R-WviJtVK63k7-8R1rVcpVfk329hi1e3tgo_gITlukd
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8JAEN4YNBEPPlAjitqD1yL76OtkDIFgBA4EI7dNd9v1YloDhd_vTB8EYgwHPTezaWZn55WZ7yPkwQ2huoEwYpvYEbZwWWAHjgJbNmEghPEjE4mcbMIbj_3ZLNjchcGxSqyhTQEUkftqfNzYjK5G4h6xjPEhUkN5x1ibIWO2A25434FYi1Y-7b-vvTEtCVZAxEaZaovnt2O24tMWeukPb52HoP7Jf_z8KTkuE1DrubCYM7IXJw1yNFqjty4apI4ZaAHgfE6eJqlaLjIr39RdQWUNyak1hJQ7tSbxRzFFm1jYzrW6af4dzMjqgXSxFHlB3vq9aXdgl6wLtoZyNbN5QHUnDiH2h5zHbmQ6OuIRZCI-U9r1XARAi7inPaqYqzjliPBHO7Hva8UNpfyS1JI0ia-IxVyoppCanmkhIkh9WKR8YZjCviNTTpOIStdSl5DkyIzxKWmJXFopS6KyZKmsJmmvxb4KTI5dAsHmRcosb4aYgrlE8h2yrerWZfm8F5L5mMg5HhfXfzj6nhwOpqOhHL6MX29IHYns80Fg3iK1bL6Mb8mBXsF1z-9yk_4G90ntSA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yRebBH1NxOrUHr51rkv46icwVxTnGmLhbaJLGi7Rj7fb3-9KmQxHZQc_lhfLy8t73wsv3IXTjxdDdQBmxVeJSm3o4tEOXQyyrOKRUBVJJWopN-KNRMJuFYzNNmJuxSt1Dq4oooszV-nDPpaon4m51FxNAoYbuDuMu1oLZLmThbYDOnu6_ptHbOhk7Rl8FTGxtUz_i-W2Zb-XpG3npj2RdVqDo4B_-_RDtG_hp3VfxcoS2krSF9l7W3K15CzU1_qzom4_R3STjy7ywyne6K-irAZpaQwDcmTVJ3qsZ2tTSl7lWPyu_QxBZA7CunkSeoNdoMO0_2kZzwRbQrBY2CR3RS2Ko_DEhiSdVT0giAYcEmAvP9zT9mSS-8B2OPU4covn9nF4SBIIT5TjkFDXSLE3OkIU96KW0MD0WlEoAPljygCrM9a0j5m4b0drVTBhCcq2L8cEcw1taO4tpZzHjrDbqrs3mFSPHJoPw6z6yorwKUZVuCSMbbDv1pjNzuHOGAw3jXJ_Q8z8sfY12xw8RGz6Nni9QU6vYl1PApIMaxWKZXKIdsYLdXlyVAf0JJePr-Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Multivariate+Lasso+Regression+with+Covariance+Estimation&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=Chang%2C+Le&rft.au=Welsh%2C+A+H&rft.date=2023-07-03&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1061-8600&rft.eissn=1537-2715&rft.volume=32&rft.issue=3&rft.spage=961&rft.epage=973&rft_id=info:doi/10.1080%2F10618600.2022.2118752&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon