Well-posedness of second order differential equations in Hölder continuous function spaces

By using operator-valued Ċ α -Fourier multiplier results on vector-valued Hölder continuous function spaces C α (ℝ; X) proved by Arendt, Batty and Bu, we obtain a necessary and sufficient condition for the C α -well-posedness for the following second order differential equations: u״ (t) = Au(t) + Bu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Quaestiones mathematicae Ročník 42; číslo 10; s. 1379 - 1391
Hlavní autoři: Bu, Shangquan, Cai, Gang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Grahamstown Taylor & Francis 26.11.2019
Taylor & Francis Ltd
Témata:
ISSN:1607-3606, 1727-933X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:By using operator-valued Ċ α -Fourier multiplier results on vector-valued Hölder continuous function spaces C α (ℝ; X) proved by Arendt, Batty and Bu, we obtain a necessary and sufficient condition for the C α -well-posedness for the following second order differential equations: u״ (t) = Au(t) + Bu׳ (t) + f (t), (t ∈ ℝ), where A and B are closed linear operators on a Banach space X satisfying D(A) ⊂ D(B). We give a concrete example that our abstract result may be applied.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1607-3606
1727-933X
DOI:10.2989/16073606.2018.1514330