Well-posedness of second order differential equations in Hölder continuous function spaces
By using operator-valued Ċ α -Fourier multiplier results on vector-valued Hölder continuous function spaces C α (ℝ; X) proved by Arendt, Batty and Bu, we obtain a necessary and sufficient condition for the C α -well-posedness for the following second order differential equations: u״ (t) = Au(t) + Bu...
Uloženo v:
| Vydáno v: | Quaestiones mathematicae Ročník 42; číslo 10; s. 1379 - 1391 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Grahamstown
Taylor & Francis
26.11.2019
Taylor & Francis Ltd |
| Témata: | |
| ISSN: | 1607-3606, 1727-933X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | By using operator-valued Ċ
α
-Fourier multiplier results on vector-valued Hölder continuous function spaces C
α
(ℝ; X) proved by Arendt, Batty and Bu, we obtain a necessary and sufficient condition for the C
α
-well-posedness for the following second order differential equations:
u״ (t) = Au(t) + Bu׳ (t) + f (t), (t ∈ ℝ),
where A and B are closed linear operators on a Banach space X satisfying D(A) ⊂ D(B). We give a concrete example that our abstract result may be applied. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1607-3606 1727-933X |
| DOI: | 10.2989/16073606.2018.1514330 |