A regularised fast recursive algorithm for fraction model identification of nonlinear dynamic systems
The fraction model has been widely used to represent a range of engineering systems. To accurately identify the fraction model is however challenging, and this paper presents a regularised fast recursive algorithm (RFRA) to identify both the true fraction model structure and the associated unknown m...
Saved in:
| Published in: | International journal of systems science Vol. 54; no. 7; pp. 1616 - 1638 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Taylor & Francis
19.05.2023
Taylor & Francis Ltd |
| Subjects: | |
| ISSN: | 0020-7721, 1464-5319 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The fraction model has been widely used to represent a range of engineering systems. To accurately identify the fraction model is however challenging, and this paper presents a regularised fast recursive algorithm (RFRA) to identify both the true fraction model structure and the associated unknown model parameters. This is achieved first by transforming the fraction form to a linear combination of nonlinear model terms. Then the terms in the denominator are used to form a regularisation term in the cost function to offset the bias induced by the linear transformation. According to the structural risk minimisation principle based on the new cost function, the model terms are selected based on their contributions to the cost function and the coefficients are then identified recursively without explicitly solving the inverse matrix. The proposed method is proved to have low computational complexity. Simulation results confirm the efficacy of the method in fast identification of the true fraction models for the targeted nonlinear systems. |
|---|---|
| AbstractList | The fraction model has been widely used to represent a range of engineering systems. To accurately identify the fraction model is however challenging, and this paper presents a regularised fast recursive algorithm (RFRA) to identify both the true fraction model structure and the associated unknown model parameters. This is achieved first by transforming the fraction form to a linear combination of nonlinear model terms. Then the terms in the denominator are used to form a regularisation term in the cost function to offset the bias induced by the linear transformation. According to the structural risk minimisation principle based on the new cost function, the model terms are selected based on their contributions to the cost function and the coefficients are then identified recursively without explicitly solving the inverse matrix. The proposed method is proved to have low computational complexity. Simulation results confirm the efficacy of the method in fast identification of the true fraction models for the targeted nonlinear systems. |
| Author | Du, Dajun Li, Yihuan Li, Kang Fei, Minrui Zhang, Li |
| Author_xml | – sequence: 1 givenname: Li surname: Zhang fullname: Zhang, Li organization: Shanghai University – sequence: 2 givenname: Kang surname: Li fullname: Li, Kang email: k.li1@leeds.ac.uk organization: University of Leeds – sequence: 3 givenname: Dajun orcidid: 0000-0003-2979-1507 surname: Du fullname: Du, Dajun email: ddj@i.shu.edu.cn organization: Shanghai University – sequence: 4 givenname: Yihuan surname: Li fullname: Li, Yihuan organization: North China Electric Power University – sequence: 5 givenname: Minrui surname: Fei fullname: Fei, Minrui organization: Shanghai University |
| BookMark | eNqFkMtKxDAUhoMoOF4eQQi47njStE2CG0W8geBG1yHNRTO0iSYZZd7ejjNuXOjqwOH7z-U7QLshBovQCYE5AQ5nADUwVpN5DTWd14RzwekOmpGma6qWErGLZmumWkP76CDnBQC0bQ0zZC9xsi_LQSWfrcFO5TI19DJl_2GxGl5i8uV1xC4m7JLSxceAx2jsgL2xoXjntfpuRoenuwYfrErYrIIavcZ5lYsd8xHac2rI9nhbD9HzzfXT1V318Hh7f3X5UGlKealoI0Bw43owDZDO9H3LmBam01ZoKqgWDXDOeF83YETfOas46zs1YYJ1PdBDdLqZ-5bi-9LmIhdxmcK0UtactNBRythEnW8onWLOyTqpffl-oiTlB0lArr3KH69y7VVuvU7p9lf6LflRpdW_uYtNzodJ5qg-YxqMLGo1xDSZDdpnSf8e8QVaOJJK |
| CitedBy_id | crossref_primary_10_1002_asjc_3723 |
| Cites_doi | 10.1016/j.neucom.2020.02.034 10.1109/WCICA.2012.6357952 10.1016/j.ifacol.2016.07.090 10.1016/j.neucom.2017.05.067 10.1016/j.neucom.2021.02.090 10.1016/j.neucom.2019.04.008 10.1016/S0925-2312(01)00644-0 10.1016/j.neucom.2019.06.019 10.1109/DIPED.2017.8100615 10.1080/00207729808929516 10.1016/j.automatica.2017.04.014 10.1016/j.automatica.2014.01.001 10.1109/TFUZZ.2014.2321594 10.1109/MELCON.2010.5476315 10.1109/TSP.2018.2890065 10.1016/j.neucom.2015.03.112 10.1016/j.neucom.2019.02.041 10.1080/00207721.2016.1186243 10.1007/978-3-030-47439-3 10.1080/00207179408923140 10.1016/j.automatica.2010.01.001 10.1080/00207178908953472 10.1109/TNNLS.2014.2346399 10.1016/S0307-904X(02)00097-5 10.1016/j.matpr.2021.05.335 10.1109/ICNC.2013.6817933 10.1016/j.neucom.2017.10.029 10.1016/j.rser.2017.02.023 10.1016/j.neucom.2018.01.001 10.1109/R10-HTC.2017.8288926 10.1016/j.apm.2004.10.008 10.1016/j.neucom.2021.06.044 10.1016/j.automatica.2013.10.010 10.1109/PES.2011.6039674 10.1016/j.neucom.2019.09.110 10.1080/00207721.2013.849774 10.1016/j.automatica.2006.03.004 10.1016/S0005-1098(99)00173-9 10.1109/ICCISci.2019.8716417 10.1016/j.automatica.2018.03.065 10.1016/j.cpc.2020.107663 10.1016/j.neucom.2011.05.045 10.1016/j.neucom.2006.10.011 10.1016/j.automatica.2010.03.013 10.1080/00207720802083018 10.1109/TAC.2005.852557 10.1049/iet-cta.2018.5368 10.1080/00207179608921662 10.1016/0041-5553(65)90150-3 10.1109/IJCNN.2000.860814 10.1016/j.ejor.2020.08.045 10.1109/TNNLS.2014.2333879 10.1080/00207179108934174 10.1016/j.ijepes.2021.106964 10.1214/009053607000000677 10.1016/j.automatica.2009.01.008 10.1080/00207721.2010.545490 10.1016/j.automatica.2014.07.021 10.1109/TAC.2014.2351851 10.1016/j.neunet.2015.01.009 10.3182/20050703-6-CZ-1902.01105 10.1016/j.automatica.2009.10.031 10.1016/j.neucom.2020.05.066 |
| ContentType | Journal Article |
| Copyright | 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2023 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2023 – notice: 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 0YH AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1080/00207721.2023.2188983 |
| DatabaseName | Taylor & Francis Open Access CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1464-5319 |
| EndPage | 1638 |
| ExternalDocumentID | 10_1080_00207721_2023_2188983 2188983 |
| Genre | Research Article |
| GroupedDBID | -~X .7F .DC .QJ 0BK 0R~ 0YH 29J 30N 4.4 5GY 5VS 8VB AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACNCT ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z MS~ NA5 NX~ O9- P2P QWB RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ZL0 ~02 ~S~ AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c338t-349098dfb0d4016dbb577c9d6ce9c393c9408878b240d9b6fea87b6ab57976b03 |
| IEDL.DBID | 0YH |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000950550000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-7721 |
| IngestDate | Sun Nov 09 07:57:49 EST 2025 Sat Nov 29 02:12:40 EST 2025 Tue Nov 18 22:42:14 EST 2025 Mon Oct 20 23:46:24 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | open-access: http://creativecommons.org/licenses/by-nc-nd/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c338t-349098dfb0d4016dbb577c9d6ce9c393c9408878b240d9b6fea87b6ab57976b03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2979-1507 |
| OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/00207721.2023.2188983 |
| PQID | 2815063377 |
| PQPubID | 2045514 |
| PageCount | 23 |
| ParticipantIDs | proquest_journals_2815063377 informaworld_taylorfrancis_310_1080_00207721_2023_2188983 crossref_citationtrail_10_1080_00207721_2023_2188983 crossref_primary_10_1080_00207721_2023_2188983 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-19 |
| PublicationDateYYYYMMDD | 2023-05-19 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | International journal of systems science |
| PublicationYear | 2023 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | CIT0030 CIT0032 CIT0031 CIT0034 CIT0033 CIT0036 CIT0035 CIT0038 CIT0037 CIT0039 CIT0041 CIT0040 CIT0043 CIT0042 CIT0001 CIT0045 CIT0044 CIT0003 CIT0047 CIT0002 CIT0046 CIT0005 CIT0049 CIT0004 CIT0048 CIT0007 CIT0006 CIT0009 CIT0008 CIT0050 CIT0052 CIT0051 CIT0010 CIT0054 CIT0053 CIT0012 CIT0056 CIT0011 CIT0055 CIT0014 CIT0058 CIT0013 CIT0057 CIT0016 CIT0015 CIT0059 CIT0018 CIT0019 CIT0061 CIT0060 CIT0063 CIT0062 CIT0021 CIT0065 CIT0020 CIT0064 CIT0023 CIT0022 Du D. (CIT0017) 2022 CIT0025 CIT0024 CIT0027 CIT0026 CIT0029 CIT0028 |
| References_xml | – ident: CIT0053 doi: 10.1016/j.neucom.2020.02.034 – ident: CIT0056 doi: 10.1109/WCICA.2012.6357952 – ident: CIT0032 doi: 10.1016/j.ifacol.2016.07.090 – ident: CIT0050 doi: 10.1016/j.neucom.2017.05.067 – ident: CIT0031 doi: 10.1016/j.neucom.2021.02.090 – ident: CIT0065 doi: 10.1016/j.neucom.2019.04.008 – year: 2022 ident: CIT0017 publication-title: Journal of Modern Power Systems and Clean Energy – ident: CIT0045 doi: 10.1016/S0925-2312(01)00644-0 – ident: CIT0022 doi: 10.1016/j.neucom.2019.06.019 – ident: CIT0001 doi: 10.1109/DIPED.2017.8100615 – ident: CIT0035 – ident: CIT0004 doi: 10.1080/00207729808929516 – ident: CIT0007 doi: 10.1016/j.automatica.2017.04.014 – ident: CIT0041 doi: 10.1016/j.automatica.2014.01.001 – ident: CIT0059 doi: 10.1109/TFUZZ.2014.2321594 – ident: CIT0014 doi: 10.1109/MELCON.2010.5476315 – ident: CIT0008 doi: 10.1109/TSP.2018.2890065 – ident: CIT0029 doi: 10.1016/j.neucom.2015.03.112 – ident: CIT0058 doi: 10.1016/j.neucom.2019.02.041 – ident: CIT0064 doi: 10.1080/00207721.2016.1186243 – ident: CIT0034 doi: 10.1007/978-3-030-47439-3 – ident: CIT0006 doi: 10.1080/00207179408923140 – ident: CIT0037 doi: 10.1016/j.automatica.2010.01.001 – ident: CIT0010 doi: 10.1080/00207178908953472 – ident: CIT0057 doi: 10.1109/TNNLS.2014.2346399 – ident: CIT0060 doi: 10.1016/S0307-904X(02)00097-5 – ident: CIT0044 doi: 10.1016/j.matpr.2021.05.335 – ident: CIT0013 doi: 10.1109/ICNC.2013.6817933 – ident: CIT0049 doi: 10.1016/j.neucom.2017.10.029 – ident: CIT0055 doi: 10.1016/j.rser.2017.02.023 – ident: CIT0042 doi: 10.1016/j.neucom.2018.01.001 – ident: CIT0046 doi: 10.1109/R10-HTC.2017.8288926 – ident: CIT0061 doi: 10.1016/j.apm.2004.10.008 – ident: CIT0028 doi: 10.1016/j.neucom.2021.06.044 – ident: CIT0003 doi: 10.1016/j.automatica.2013.10.010 – ident: CIT0021 doi: 10.1109/PES.2011.6039674 – ident: CIT0054 doi: 10.1016/j.neucom.2019.09.110 – ident: CIT0063 doi: 10.1080/00207721.2013.849774 – ident: CIT0026 doi: 10.1016/j.automatica.2006.03.004 – ident: CIT0023 doi: 10.1016/S0005-1098(99)00173-9 – ident: CIT0051 doi: 10.1109/ICCISci.2019.8716417 – ident: CIT0039 doi: 10.1016/j.automatica.2018.03.065 – ident: CIT0002 doi: 10.1016/j.cpc.2020.107663 – ident: CIT0016 doi: 10.1016/j.neucom.2011.05.045 – ident: CIT0025 doi: 10.1016/j.neucom.2006.10.011 – ident: CIT0036 doi: 10.1016/j.automatica.2010.03.013 – ident: CIT0020 doi: 10.1080/00207720802083018 – ident: CIT0027 doi: 10.1109/TAC.2005.852557 – ident: CIT0009 doi: 10.1049/iet-cta.2018.5368 – ident: CIT0062 doi: 10.1080/00207179608921662 – ident: CIT0048 doi: 10.1016/0041-5553(65)90150-3 – ident: CIT0033 doi: 10.1109/IJCNN.2000.860814 – ident: CIT0018 doi: 10.1016/j.ejor.2020.08.045 – ident: CIT0030 doi: 10.1109/TNNLS.2014.2333879 – ident: CIT0005 doi: 10.1080/00207179108934174 – ident: CIT0052 doi: 10.1016/j.ijepes.2021.106964 – ident: CIT0019 doi: 10.1214/009053607000000677 – ident: CIT0012 doi: 10.1016/j.automatica.2009.01.008 – ident: CIT0015 doi: 10.1080/00207721.2010.545490 – ident: CIT0038 doi: 10.1016/j.automatica.2014.07.021 – ident: CIT0011 doi: 10.1109/TAC.2014.2351851 – ident: CIT0047 doi: 10.1016/j.neunet.2015.01.009 – ident: CIT0024 doi: 10.3182/20050703-6-CZ-1902.01105 – ident: CIT0040 doi: 10.1016/j.automatica.2009.10.031 – ident: CIT0043 doi: 10.1016/j.neucom.2020.05.066 |
| SSID | ssj0005520 |
| Score | 2.3425598 |
| Snippet | The fraction model has been widely used to represent a range of engineering systems. To accurately identify the fraction model is however challenging, and this... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1616 |
| SubjectTerms | Algorithms Cost function Dynamical systems fraction models Linear transformations Nonlinear dynamics nonlinear model identification Nonlinear systems Regularisation regularised fast recursive algorithm Regularization |
| Title | A regularised fast recursive algorithm for fraction model identification of nonlinear dynamic systems |
| URI | https://www.tandfonline.com/doi/abs/10.1080/00207721.2023.2188983 https://www.proquest.com/docview/2815063377 |
| Volume | 54 |
| WOSCitedRecordID | wos000950550000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1464-5319 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005520 issn: 0020-7721 databaseCode: TFW dateStart: 19701001 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagMMDAG1EoyANrqiTOwx4rRNUBVQwFymT5CZH6QEmoxL_HTpxChVAHWCIl8jmWz-e7zzp_B8A1Mm6EpUFoT-6lF5mY2mOhkJ6x8ZATH4u0qkP2eJcOh3g8Jvcum7BwaZUWQ-uaKKLaq61xM140GXH2BrdvgkKL7kLUNT4KE4w2wVZooInFX_7z4CvLI3bMjAYlWZnmEs9v3ay4pxXy0h-bdeWB-vv_MPYDsOfCT9ir18sh2FCzI7D7jZTwGKgezKsC9cb8lYSaFaX5IOypwkJBNnmZ51n5OoVmzFDn9b0IWBXUgZl0uUeVuuFcw1k9SJZD-TFj00zAmjq6OAEP_dvRzcBzxRg8YVBs6aGI-ARLzX1pIFkiOY_TVBCZCEUEIkiQyG5YmFulE55oxXDKE2aamYiH--gUtMw_1RmAiQwVUyxGPBAWL2EexFzpKNYq4LFQbRA1OqDCMZXbghkTGiwJTetZpHYWqZvFNuguxd5qqo51AuS7gmlZnZHouqAJRWtkO81qoM7qCxpiy9eIUJqe_6HrC7BjX22KQkA6oFXm7-oSbItFmRX5VbW8zXPUf_oEZ873Kg |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELWgIAEHdkRZfeAalMRZ7GOFqECUnspys7xCpFJQEirx93iyQBFCHOCaZBxrxp5NM28QOiHOjIg0CCFzr73I-dSeCJX23B0PJfOpSqs5ZLeDdDik9_dsthcGyiohhrY1UESlq-FyQzK6LYmDFm7feYUQ3oXk1BkpyiiZRwuxs7WAnz_q332WecQNNKMLk4Cm7eL5aZkv9ukLeuk3bV2ZoP7af2x-Ha02Diju1SdmA82ZySZamYEl3EKmh_NqRL1TAEZjK4rSPVCQV5gaLMYPz3lWPj5ht2ls87ozAlcjdXCmm-qjSuD42eJJvUuRY_02EU-ZwjV4dLGNbvrno7MLrxnH4CkXx5YeiZjPqLbS1y4oS7SUcZoqphNlmCKMKBaByqISxM5kYo2gqUyE-8z5PNInO6jj_ml2EU50aIQRMZGBgoiJyiCWxkaxNYGMlemiqBUCVw1WOYzMGPPgA9K05iIHLvKGi110-kH2UoN1_EbAZiXMyypLYuuRJpz8QnvQHgfe3PuChxQQGwlJ070_LH2Mli5G1wM-uBxe7aNleAUFCwE7QJ0yfzWHaFFNy6zIj6qz_g6-TvpC |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8QwFA46iujBXRzXHLxW2qZLchzUojgMc3C7haw6MBttHfDfm7TpqIh40Gvbl4a35C28fA-AM2TcCEuD0FbupReZmNpjoZCesfGQEx-LtJpD9tBNez389ET6rpuwcG2VNofWNVBEdVZb455K3XTE2RvcvgkKbXYXonPjozDBaBEsmdA5sUp-lz1-dHnEDpnRZEmWprnE89MyX9zTF_DSb4d15YGyjX_Y-yZYd-En7NT6sgUW1HgbrH0CJdwBqgPzakC9MX8loWZFaR4IW1WYKciGz5N8UL6MoNkz1Hl9LwJWA3XgQLreo0rccKLhuN4ky6F8G7PRQMAaOrrYBffZ1d3FteeGMXjCZLGlhyLiEyw196VJyRLJeZymgshEKCIQQYJE9sDC3Aqd8EQrhlOeMPOZiXi4j_ZAy_xT7QOYyFAxxWLEA2HzJcyDmCsdxVoFPBaqDaJGBlQ4pHI7MGNIgzmgac1FarlIHRfb4HxONq2hOn4jIJ8FTMuqRqLrgSYU_UJ71GgDdVZf0BBbvEaE0vTgD0ufgpX-ZUa7N73bQ7Bq39huhYAcgVaZv6pjsCxm5aDITypNfwfLXPj0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+regularised+fast+recursive+algorithm+for+fraction+model+identification+of+nonlinear+dynamic+systems&rft.jtitle=International+journal+of+systems+science&rft.au=Zhang%2C+Li&rft.au=Li%2C+Kang&rft.au=Du%2C+Dajun&rft.au=Li%2C+Yihuan&rft.date=2023-05-19&rft.pub=Taylor+%26+Francis&rft.issn=0020-7721&rft.eissn=1464-5319&rft.volume=54&rft.issue=7&rft.spage=1616&rft.epage=1638&rft_id=info:doi/10.1080%2F00207721.2023.2188983&rft.externalDBID=0YH&rft.externalDocID=2188983 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7721&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7721&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7721&client=summon |