A regularised fast recursive algorithm for fraction model identification of nonlinear dynamic systems

The fraction model has been widely used to represent a range of engineering systems. To accurately identify the fraction model is however challenging, and this paper presents a regularised fast recursive algorithm (RFRA) to identify both the true fraction model structure and the associated unknown m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of systems science Jg. 54; H. 7; S. 1616 - 1638
Hauptverfasser: Zhang, Li, Li, Kang, Du, Dajun, Li, Yihuan, Fei, Minrui
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Taylor & Francis 19.05.2023
Taylor & Francis Ltd
Schlagworte:
ISSN:0020-7721, 1464-5319
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The fraction model has been widely used to represent a range of engineering systems. To accurately identify the fraction model is however challenging, and this paper presents a regularised fast recursive algorithm (RFRA) to identify both the true fraction model structure and the associated unknown model parameters. This is achieved first by transforming the fraction form to a linear combination of nonlinear model terms. Then the terms in the denominator are used to form a regularisation term in the cost function to offset the bias induced by the linear transformation. According to the structural risk minimisation principle based on the new cost function, the model terms are selected based on their contributions to the cost function and the coefficients are then identified recursively without explicitly solving the inverse matrix. The proposed method is proved to have low computational complexity. Simulation results confirm the efficacy of the method in fast identification of the true fraction models for the targeted nonlinear systems.
AbstractList The fraction model has been widely used to represent a range of engineering systems. To accurately identify the fraction model is however challenging, and this paper presents a regularised fast recursive algorithm (RFRA) to identify both the true fraction model structure and the associated unknown model parameters. This is achieved first by transforming the fraction form to a linear combination of nonlinear model terms. Then the terms in the denominator are used to form a regularisation term in the cost function to offset the bias induced by the linear transformation. According to the structural risk minimisation principle based on the new cost function, the model terms are selected based on their contributions to the cost function and the coefficients are then identified recursively without explicitly solving the inverse matrix. The proposed method is proved to have low computational complexity. Simulation results confirm the efficacy of the method in fast identification of the true fraction models for the targeted nonlinear systems.
Author Du, Dajun
Li, Yihuan
Li, Kang
Fei, Minrui
Zhang, Li
Author_xml – sequence: 1
  givenname: Li
  surname: Zhang
  fullname: Zhang, Li
  organization: Shanghai University
– sequence: 2
  givenname: Kang
  surname: Li
  fullname: Li, Kang
  email: k.li1@leeds.ac.uk
  organization: University of Leeds
– sequence: 3
  givenname: Dajun
  orcidid: 0000-0003-2979-1507
  surname: Du
  fullname: Du, Dajun
  email: ddj@i.shu.edu.cn
  organization: Shanghai University
– sequence: 4
  givenname: Yihuan
  surname: Li
  fullname: Li, Yihuan
  organization: North China Electric Power University
– sequence: 5
  givenname: Minrui
  surname: Fei
  fullname: Fei, Minrui
  organization: Shanghai University
BookMark eNqFkMtKxDAUhoMoOF4eQQi47njStE2CG0W8geBG1yHNRTO0iSYZZd7ejjNuXOjqwOH7z-U7QLshBovQCYE5AQ5nADUwVpN5DTWd14RzwekOmpGma6qWErGLZmumWkP76CDnBQC0bQ0zZC9xsi_LQSWfrcFO5TI19DJl_2GxGl5i8uV1xC4m7JLSxceAx2jsgL2xoXjntfpuRoenuwYfrErYrIIavcZ5lYsd8xHac2rI9nhbD9HzzfXT1V318Hh7f3X5UGlKealoI0Bw43owDZDO9H3LmBam01ZoKqgWDXDOeF83YETfOas46zs1YYJ1PdBDdLqZ-5bi-9LmIhdxmcK0UtactNBRythEnW8onWLOyTqpffl-oiTlB0lArr3KH69y7VVuvU7p9lf6LflRpdW_uYtNzodJ5qg-YxqMLGo1xDSZDdpnSf8e8QVaOJJK
CitedBy_id crossref_primary_10_1002_asjc_3723
Cites_doi 10.1016/j.neucom.2020.02.034
10.1109/WCICA.2012.6357952
10.1016/j.ifacol.2016.07.090
10.1016/j.neucom.2017.05.067
10.1016/j.neucom.2021.02.090
10.1016/j.neucom.2019.04.008
10.1016/S0925-2312(01)00644-0
10.1016/j.neucom.2019.06.019
10.1109/DIPED.2017.8100615
10.1080/00207729808929516
10.1016/j.automatica.2017.04.014
10.1016/j.automatica.2014.01.001
10.1109/TFUZZ.2014.2321594
10.1109/MELCON.2010.5476315
10.1109/TSP.2018.2890065
10.1016/j.neucom.2015.03.112
10.1016/j.neucom.2019.02.041
10.1080/00207721.2016.1186243
10.1007/978-3-030-47439-3
10.1080/00207179408923140
10.1016/j.automatica.2010.01.001
10.1080/00207178908953472
10.1109/TNNLS.2014.2346399
10.1016/S0307-904X(02)00097-5
10.1016/j.matpr.2021.05.335
10.1109/ICNC.2013.6817933
10.1016/j.neucom.2017.10.029
10.1016/j.rser.2017.02.023
10.1016/j.neucom.2018.01.001
10.1109/R10-HTC.2017.8288926
10.1016/j.apm.2004.10.008
10.1016/j.neucom.2021.06.044
10.1016/j.automatica.2013.10.010
10.1109/PES.2011.6039674
10.1016/j.neucom.2019.09.110
10.1080/00207721.2013.849774
10.1016/j.automatica.2006.03.004
10.1016/S0005-1098(99)00173-9
10.1109/ICCISci.2019.8716417
10.1016/j.automatica.2018.03.065
10.1016/j.cpc.2020.107663
10.1016/j.neucom.2011.05.045
10.1016/j.neucom.2006.10.011
10.1016/j.automatica.2010.03.013
10.1080/00207720802083018
10.1109/TAC.2005.852557
10.1049/iet-cta.2018.5368
10.1080/00207179608921662
10.1016/0041-5553(65)90150-3
10.1109/IJCNN.2000.860814
10.1016/j.ejor.2020.08.045
10.1109/TNNLS.2014.2333879
10.1080/00207179108934174
10.1016/j.ijepes.2021.106964
10.1214/009053607000000677
10.1016/j.automatica.2009.01.008
10.1080/00207721.2010.545490
10.1016/j.automatica.2014.07.021
10.1109/TAC.2014.2351851
10.1016/j.neunet.2015.01.009
10.3182/20050703-6-CZ-1902.01105
10.1016/j.automatica.2009.10.031
10.1016/j.neucom.2020.05.066
ContentType Journal Article
Copyright 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2023
2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2023
– notice: 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/00207721.2023.2188983
DatabaseName Taylor & Francis Open Access
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1464-5319
EndPage 1638
ExternalDocumentID 10_1080_00207721_2023_2188983
2188983
Genre Research Article
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
0YH
29J
30N
4.4
5GY
5VS
8VB
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACNCT
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
MS~
NA5
NX~
O9-
P2P
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
ZL0
~02
~S~
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c338t-349098dfb0d4016dbb577c9d6ce9c393c9408878b240d9b6fea87b6ab57976b03
IEDL.DBID 0YH
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000950550000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-7721
IngestDate Sun Nov 09 07:57:49 EST 2025
Sat Nov 29 02:12:40 EST 2025
Tue Nov 18 22:42:14 EST 2025
Mon Oct 20 23:46:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License open-access: http://creativecommons.org/licenses/by-nc-nd/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-349098dfb0d4016dbb577c9d6ce9c393c9408878b240d9b6fea87b6ab57976b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2979-1507
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/00207721.2023.2188983
PQID 2815063377
PQPubID 2045514
PageCount 23
ParticipantIDs proquest_journals_2815063377
informaworld_taylorfrancis_310_1080_00207721_2023_2188983
crossref_citationtrail_10_1080_00207721_2023_2188983
crossref_primary_10_1080_00207721_2023_2188983
PublicationCentury 2000
PublicationDate 2023-05-19
PublicationDateYYYYMMDD 2023-05-19
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-19
  day: 19
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle International journal of systems science
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0032
CIT0031
CIT0034
CIT0033
CIT0036
CIT0035
CIT0038
CIT0037
CIT0039
CIT0041
CIT0040
CIT0043
CIT0042
CIT0001
CIT0045
CIT0044
CIT0003
CIT0047
CIT0002
CIT0046
CIT0005
CIT0049
CIT0004
CIT0048
CIT0007
CIT0006
CIT0009
CIT0008
CIT0050
CIT0052
CIT0051
CIT0010
CIT0054
CIT0053
CIT0012
CIT0056
CIT0011
CIT0055
CIT0014
CIT0058
CIT0013
CIT0057
CIT0016
CIT0015
CIT0059
CIT0018
CIT0019
CIT0061
CIT0060
CIT0063
CIT0062
CIT0021
CIT0065
CIT0020
CIT0064
CIT0023
CIT0022
Du D. (CIT0017) 2022
CIT0025
CIT0024
CIT0027
CIT0026
CIT0029
CIT0028
References_xml – ident: CIT0053
  doi: 10.1016/j.neucom.2020.02.034
– ident: CIT0056
  doi: 10.1109/WCICA.2012.6357952
– ident: CIT0032
  doi: 10.1016/j.ifacol.2016.07.090
– ident: CIT0050
  doi: 10.1016/j.neucom.2017.05.067
– ident: CIT0031
  doi: 10.1016/j.neucom.2021.02.090
– ident: CIT0065
  doi: 10.1016/j.neucom.2019.04.008
– year: 2022
  ident: CIT0017
  publication-title: Journal of Modern Power Systems and Clean Energy
– ident: CIT0045
  doi: 10.1016/S0925-2312(01)00644-0
– ident: CIT0022
  doi: 10.1016/j.neucom.2019.06.019
– ident: CIT0001
  doi: 10.1109/DIPED.2017.8100615
– ident: CIT0035
– ident: CIT0004
  doi: 10.1080/00207729808929516
– ident: CIT0007
  doi: 10.1016/j.automatica.2017.04.014
– ident: CIT0041
  doi: 10.1016/j.automatica.2014.01.001
– ident: CIT0059
  doi: 10.1109/TFUZZ.2014.2321594
– ident: CIT0014
  doi: 10.1109/MELCON.2010.5476315
– ident: CIT0008
  doi: 10.1109/TSP.2018.2890065
– ident: CIT0029
  doi: 10.1016/j.neucom.2015.03.112
– ident: CIT0058
  doi: 10.1016/j.neucom.2019.02.041
– ident: CIT0064
  doi: 10.1080/00207721.2016.1186243
– ident: CIT0034
  doi: 10.1007/978-3-030-47439-3
– ident: CIT0006
  doi: 10.1080/00207179408923140
– ident: CIT0037
  doi: 10.1016/j.automatica.2010.01.001
– ident: CIT0010
  doi: 10.1080/00207178908953472
– ident: CIT0057
  doi: 10.1109/TNNLS.2014.2346399
– ident: CIT0060
  doi: 10.1016/S0307-904X(02)00097-5
– ident: CIT0044
  doi: 10.1016/j.matpr.2021.05.335
– ident: CIT0013
  doi: 10.1109/ICNC.2013.6817933
– ident: CIT0049
  doi: 10.1016/j.neucom.2017.10.029
– ident: CIT0055
  doi: 10.1016/j.rser.2017.02.023
– ident: CIT0042
  doi: 10.1016/j.neucom.2018.01.001
– ident: CIT0046
  doi: 10.1109/R10-HTC.2017.8288926
– ident: CIT0061
  doi: 10.1016/j.apm.2004.10.008
– ident: CIT0028
  doi: 10.1016/j.neucom.2021.06.044
– ident: CIT0003
  doi: 10.1016/j.automatica.2013.10.010
– ident: CIT0021
  doi: 10.1109/PES.2011.6039674
– ident: CIT0054
  doi: 10.1016/j.neucom.2019.09.110
– ident: CIT0063
  doi: 10.1080/00207721.2013.849774
– ident: CIT0026
  doi: 10.1016/j.automatica.2006.03.004
– ident: CIT0023
  doi: 10.1016/S0005-1098(99)00173-9
– ident: CIT0051
  doi: 10.1109/ICCISci.2019.8716417
– ident: CIT0039
  doi: 10.1016/j.automatica.2018.03.065
– ident: CIT0002
  doi: 10.1016/j.cpc.2020.107663
– ident: CIT0016
  doi: 10.1016/j.neucom.2011.05.045
– ident: CIT0025
  doi: 10.1016/j.neucom.2006.10.011
– ident: CIT0036
  doi: 10.1016/j.automatica.2010.03.013
– ident: CIT0020
  doi: 10.1080/00207720802083018
– ident: CIT0027
  doi: 10.1109/TAC.2005.852557
– ident: CIT0009
  doi: 10.1049/iet-cta.2018.5368
– ident: CIT0062
  doi: 10.1080/00207179608921662
– ident: CIT0048
  doi: 10.1016/0041-5553(65)90150-3
– ident: CIT0033
  doi: 10.1109/IJCNN.2000.860814
– ident: CIT0018
  doi: 10.1016/j.ejor.2020.08.045
– ident: CIT0030
  doi: 10.1109/TNNLS.2014.2333879
– ident: CIT0005
  doi: 10.1080/00207179108934174
– ident: CIT0052
  doi: 10.1016/j.ijepes.2021.106964
– ident: CIT0019
  doi: 10.1214/009053607000000677
– ident: CIT0012
  doi: 10.1016/j.automatica.2009.01.008
– ident: CIT0015
  doi: 10.1080/00207721.2010.545490
– ident: CIT0038
  doi: 10.1016/j.automatica.2014.07.021
– ident: CIT0011
  doi: 10.1109/TAC.2014.2351851
– ident: CIT0047
  doi: 10.1016/j.neunet.2015.01.009
– ident: CIT0024
  doi: 10.3182/20050703-6-CZ-1902.01105
– ident: CIT0040
  doi: 10.1016/j.automatica.2009.10.031
– ident: CIT0043
  doi: 10.1016/j.neucom.2020.05.066
SSID ssj0005520
Score 2.3425598
Snippet The fraction model has been widely used to represent a range of engineering systems. To accurately identify the fraction model is however challenging, and this...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1616
SubjectTerms Algorithms
Cost function
Dynamical systems
fraction models
Linear transformations
Nonlinear dynamics
nonlinear model identification
Nonlinear systems
Regularisation
regularised fast recursive algorithm
Regularization
Title A regularised fast recursive algorithm for fraction model identification of nonlinear dynamic systems
URI https://www.tandfonline.com/doi/abs/10.1080/00207721.2023.2188983
https://www.proquest.com/docview/2815063377
Volume 54
WOSCitedRecordID wos000950550000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1464-5319
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005520
  issn: 0020-7721
  databaseCode: TFW
  dateStart: 19701001
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagMMDAG1EoyANrqqRO43isEFUHVDEUUabIT6jUB0pCJf4959gtrRDqAEukRD7nZPvs-6y77xC6ZUJyzTnYt2mTIBYabA5wUBC3YsFlohLqEoUfaL-fDofs0UcTFj6s0mJo44giqr3aGjcXxSIizmZwh-AUWnTXIk04o1KWkm200wJoYvFX-NL7jvJoe2ZGQElWZpHE81s3a8fTGnnpj826OoG6h_-g-xE68O4n7rj1coy29PQE7a-QEp4i3cF5VaAezF8rbHhRwgdpbxXmGvPx6ywflW8TDDpjk7u8CFwV1MEj5WOPqunGM4OnTkmeY_U55ZORxI46ujhDT937wV0v8MUYAgkotgxIzEKWKiNCBZAsUUK0KZVMJVIzSRiRLLYbVirARVBMJEbzlIqEQzPweERIzlEN_qkvEDaRSGikSGxsvWslGAEnjEZtqbkgOmJ1FC_mIJOeqdwWzBhn0ZLQ1I1iZkcx86NYR82l2Luj6tgkwFYnOCurOxLjCppkZINsY7EaMm_1RdZKLV8jIZRe_qHrK7RnX22IQsQaqFbmH_oa7cp5OSrym2p5w3PQff4C3xH2-g
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT8IwFG8UTdSD30YUtQevI4xu63okRoIROWHk1vRTSRTMmCT-976uAyHGcNDrttc1fd_Ne7-H0DWTShghQL9tTIJIGtA5yIOCqBlJoRKdUN8o3KW9XjoYsMVeGFdW6XJo64EiClvtlNtdRs9K4lwLdwOiQpfeNUkdnFTKUrKONmLwtQ4_v99--i7ziEtoRkiTHM2si-e3ZZb80xJ66Q9rXbig9t5_bH4f7ZYBKG55iTlAa2Z0iHYWYAmPkGnhrBhRDwbAaGzFJIcHyt0rTA0Wr8_jbJi_vGHYNLaZ74zAxUgdPNRl9VHBcDy2eOR3KTKsP0fibaiwB4-eHKPH9m3_phOU4xgCBXlsHpCINViqrWxoSMoSLWVMqWI6UYYpwohikTNZqYQgQTOZWCNSKhMBn0HMIxvkBFXgn-YUYRvKhIaaRNZNvNaSEQjDaBgrIyQxIauiaMYErkqscjcy45WHc0hTf4rcnSIvT7GK6nOydw_WsYqALXKY58UtifUjTThZQVubiQMv9X7Cm6lDbCSE0rM_LH2Ftjr9hy7v3vXuz9G2e-UKFkJWQ5U8-zAXaFNN8-Ekuyxk_Qs2DPoS
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI54CcGBN2IwIAeundala5ojAiYQaNphiN2iPGHSNlBbJvHvcZqMhxDaAa5tnVqOHduR_RmhMyaVMEKAfds2iRJpwOYgD4qSViKFSnVKfaPwHe12s8GA9UI1YRHKKl0ObT1QRHVWO-N-0XZWEec6uJsQFLrsrkUa4KMylpFFtAyhc-qUvN95-KzyaAdkRsiSHM2siee3Zb65p2_gpT8O68oDdTb_gfcttBHCT3zu9WUbLZjJDlr_Akq4i8w5zqsB9WD-RmMrihIeKHerMDVYjB6f82H5NMbAM7a574vA1UAdPNSh9qjabvxs8cQzKXKs3yZiPFTYQ0cXe-i-c9W_uI7CMIZIQRZbRiRhTZZpK5saUrJUS9mmVDGdKsMUYUSxxB1YmYQQQTOZWiMyKlMBn0HEI5tkHy3BP80BwjaWKY01Saybd60lIxCE0bitjJDExKyGktkecBWQyt3AjBGPPwBNvRS5kyIPUqyhxgfZi4fqmEfAvm4wL6s7EusHmnAyh7Y-0wYerL7grczhNRJC6eEflj5Fq73LDr-76d4eoTX3xlUrxKyOlsr81RyjFTUth0V-Umn6O0G--MQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+regularised+fast+recursive+algorithm+for+fraction+model+identification+of+nonlinear+dynamic+systems&rft.jtitle=International+journal+of+systems+science&rft.au=Zhang%2C+Li&rft.au=Li%2C+Kang&rft.au=Du%2C+Dajun&rft.au=Li%2C+Yihuan&rft.date=2023-05-19&rft.issn=0020-7721&rft.eissn=1464-5319&rft.volume=54&rft.issue=7&rft.spage=1616&rft.epage=1638&rft_id=info:doi/10.1080%2F00207721.2023.2188983&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_00207721_2023_2188983
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7721&client=summon