Asynchronous broadcast-based decentralized learning in sensor networks

In this paper, we study the problem of decentralized learning in sensor networks in which local learners estimate and reach consensus to the quantity of interest inferred globally while communicating only with their immediate neighbours. The main challenge lies in reducing the communication cost in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of parallel, emergent and distributed systems Jg. 33; H. 6; S. 589 - 607
Hauptverfasser: Zhao, Liang, Song, Wen-Zhan, Ye, Xiaojing, Gu, Yujie
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Abingdon Taylor & Francis 02.11.2018
Taylor & Francis Ltd
Schlagworte:
ISSN:1744-5760, 1744-5779
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, we study the problem of decentralized learning in sensor networks in which local learners estimate and reach consensus to the quantity of interest inferred globally while communicating only with their immediate neighbours. The main challenge lies in reducing the communication cost in the network, which involves inter-node synchronisation and data exchange. To address this issue, a novel asynchronous broadcast-based decentralized learning algorithm is proposed. Furthermore, we prove that the iterates generated by the developed decentralized method converge to a consensual optimal solution (model). Numerical results demonstrate that it is a promising approach for decentralized learning in sensor networks. The execution model on a decentralized sensor network and the workflow of asynchronous computing.
AbstractList In this paper, we study the problem of decentralized learning in sensor networks in which local learners estimate and reach consensus to the quantity of interest inferred globally while communicating only with their immediate neighbours. The main challenge lies in reducing the communication cost in the network, which involves inter-node synchronisation and data exchange. To address this issue, a novel asynchronous broadcast-based decentralized learning algorithm is proposed. Furthermore, we prove that the iterates generated by the developed decentralized method converge to a consensual optimal solution (model). Numerical results demonstrate that it is a promising approach for decentralized learning in sensor networks.
In this paper, we study the problem of decentralized learning in sensor networks in which local learners estimate and reach consensus to the quantity of interest inferred globally while communicating only with their immediate neighbours. The main challenge lies in reducing the communication cost in the network, which involves inter-node synchronisation and data exchange. To address this issue, a novel asynchronous broadcast-based decentralized learning algorithm is proposed. Furthermore, we prove that the iterates generated by the developed decentralized method converge to a consensual optimal solution (model). Numerical results demonstrate that it is a promising approach for decentralized learning in sensor networks. The execution model on a decentralized sensor network and the workflow of asynchronous computing.
Author Song, Wen-Zhan
Ye, Xiaojing
Gu, Yujie
Zhao, Liang
Author_xml – sequence: 1
  givenname: Liang
  surname: Zhao
  fullname: Zhao, Liang
  email: lzhao2@ggc.edu
  organization: Department of Computer Science, Georgia State University
– sequence: 2
  givenname: Wen-Zhan
  surname: Song
  fullname: Song, Wen-Zhan
  organization: School of Electrical & Computer Engineering, University of Georgia
– sequence: 3
  givenname: Xiaojing
  surname: Ye
  fullname: Ye, Xiaojing
  organization: Department of Mathematics & Statistics, Georgia State University
– sequence: 4
  givenname: Yujie
  surname: Gu
  fullname: Gu, Yujie
  organization: Department of Electrical & Computer Engineering, Temple University
BookMark eNqFkM1KAzEUhYMo2FYfQRhwPTWZTJIZ3FiKVaHgRtchk9xo6jSpyRSpT-8MrS5c6Or-cM653G-Mjn3wgNAFwVOCK3xFRFkywfG0wERMSVGXvMZHaDTscyZEffzTc3yKximtMC6LkosRWszSzuvXGHzYpqyJQRmtUpc3KoHJDGjwXVSt--ynFlT0zr9kzmcJfAox89B9hPiWztCJVW2C80OdoOfF7dP8Pl8-3j3MZ8tcU1p1OaUN4YoSVZQKKmoxa7QAEFArWlumQVeG11xTzUDgBnNTq8oazpixQnCgE3S5z93E8L6F1MlV2Ebfn5QFIaUgBRaiV13vVTqGlCJYqV2nOheGX1wrCZYDOPkNTg7g5AFc72a_3Jvo1iru_vXd7H3O2xDXqgfTGtmpXRuijcprlyT9O-ILKoaH5Q
CitedBy_id crossref_primary_10_3390_s20216153
crossref_primary_10_1109_TSIPN_2018_2876751
crossref_primary_10_1109_TVT_2017_2704610
crossref_primary_10_3390_s19020301
crossref_primary_10_1109_TMC_2023_3320551
crossref_primary_10_1109_ACCESS_2019_2960494
crossref_primary_10_1016_j_dsp_2019_07_002
crossref_primary_10_1080_17445760_2018_1489538
Cites_doi 10.1016/j.jvolgeores.2007.06.008
10.1109/ICASSP.2012.6288575
10.1109/JSTSP.2011.2120593
10.1109/CDC.2013.6760448
10.1109/ACC.2012.6314986
10.1109/TAC.2010.2079650
10.1109/TAC.1986.1104412
10.1111/j.1365-246X.1987.tb00728.x
10.1109/TAC.2008.2009515
10.1109/GlobalSIP.2013.6736937
10.1145/2107736.2107740
10.1109/ISWPC.2008.4556312
10.1109/TSP.2009.2016247
10.1109/SFCS.2003.1238221
10.1109/BigData.2015.7363839
10.1109/CDC.2013.6760975
ContentType Journal Article
Copyright 2017 Informa UK Limited, trading as Taylor & Francis Group 2017
2017 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2017 Informa UK Limited, trading as Taylor & Francis Group 2017
– notice: 2017 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/17445760.2017.1294690
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1744-5779
EndPage 607
ExternalDocumentID 10_1080_17445760_2017_1294690
1294690
Genre Article
GrantInformation_xml – fundername: National Science Foundation
  grantid: 1125165; 1066391; 1442630
  funderid: 10.13039/100000001
GroupedDBID .7F
.QJ
0BK
0R~
29J
30N
4.4
5GY
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
EJD
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
NA5
NX~
O9-
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c338t-33b16a31a24ae83f05bc7ee7e9a39f5cec8d696c3c5e70b06d9a8fd655df776e3
IEDL.DBID TFW
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000446126300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1744-5760
IngestDate Wed Aug 13 11:30:42 EDT 2025
Sat Nov 29 02:32:38 EST 2025
Tue Nov 18 20:02:29 EST 2025
Mon Oct 20 23:49:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-33b16a31a24ae83f05bc7ee7e9a39f5cec8d696c3c5e70b06d9a8fd655df776e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2114712077
PQPubID 176139
PageCount 19
ParticipantIDs crossref_citationtrail_10_1080_17445760_2017_1294690
informaworld_taylorfrancis_310_1080_17445760_2017_1294690
crossref_primary_10_1080_17445760_2017_1294690
proquest_journals_2114712077
PublicationCentury 2000
PublicationDate 2018-11-02
PublicationDateYYYYMMDD 2018-11-02
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-02
  day: 02
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle International journal of parallel, emergent and distributed systems
PublicationYear 2018
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Boyd S (CIT0020) 2006; 14
CIT0021
CIT0001
CIT0012
CIT0023
Xiao L (CIT0007) 2005
CIT0011
CIT0003
CIT0014
CIT0025
CIT0002
CIT0013
Polyak BT (CIT0022) 1987
CIT0016
CIT0015
Terelius UTH (CIT0008) 2011; 18
CIT0018
Iyer HM (CIT0024) 1993
CIT0006
CIT0017
CIT0009
CIT0019
References_xml – volume-title: Proceedings of the 4th International Symposium on Information Processing in Sensor Networks, IPSN ’05, Los Angeles, California
  year: 2005
  ident: CIT0007
– ident: CIT0023
  doi: 10.1016/j.jvolgeores.2007.06.008
– ident: CIT0017
  doi: 10.1109/ICASSP.2012.6288575
– ident: CIT0001
  doi: 10.1109/JSTSP.2011.2120593
– ident: CIT0013
  doi: 10.1109/CDC.2013.6760448
– volume: 14
  start-page: 2508
  year: 2006
  ident: CIT0020
  publication-title: IEEE/ACM Trans Networks
– ident: CIT0006
  doi: 10.1109/ACC.2012.6314986
– ident: CIT0009
– ident: CIT0019
  doi: 10.1109/TAC.2010.2079650
– ident: CIT0014
  doi: 10.1109/TAC.1986.1104412
– ident: CIT0025
  doi: 10.1111/j.1365-246X.1987.tb00728.x
– ident: CIT0002
  doi: 10.1109/TAC.2008.2009515
– ident: CIT0012
  doi: 10.1109/GlobalSIP.2013.6736937
– ident: CIT0021
  doi: 10.1145/2107736.2107740
– volume-title: Imaging volcanoes using teleseismic tomography
  year: 1993
  ident: CIT0024
– volume: 18
  start-page: 11245
  year: 2011
  ident: CIT0008
  publication-title: IFAC
– ident: CIT0018
  doi: 10.1109/ISWPC.2008.4556312
– ident: CIT0015
  doi: 10.1109/TSP.2009.2016247
– volume-title: Introduction to optimization
  year: 1987
  ident: CIT0022
– ident: CIT0016
  doi: 10.1109/SFCS.2003.1238221
– ident: CIT0011
  doi: 10.1109/BigData.2015.7363839
– ident: CIT0003
  doi: 10.1109/CDC.2013.6760975
SSID ssj0042467
Score 2.20334
Snippet In this paper, we study the problem of decentralized learning in sensor networks in which local learners estimate and reach consensus to the quantity of...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 589
SubjectTerms Asynchronous algorithm
big data
Communication
Data exchange
decentralized learning
Machine learning
Mathematical models
Networks
Production planning
sensor network
Sensors
Title Asynchronous broadcast-based decentralized learning in sensor networks
URI https://www.tandfonline.com/doi/abs/10.1080/17445760.2017.1294690
https://www.proquest.com/docview/2114712077
Volume 33
WOSCitedRecordID wos000446126300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1744-5779
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0042467
  issn: 1744-5760
  databaseCode: TFW
  dateStart: 20050301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yPHhxfuJ0Sg9eO9smbZLjEIun4WHibiVflYG0snSC_vW-tKk4RHbQY6AvhPfyvsov74fQNZeZYsZA9FPEhETGOBRMqNDxvGiuIOFHuiWboLMZWyz4g0cTWg-rdD102Q2KaGO1c24hbY-Iu4EimkCZHDlgFp1AwnItHkRhqOwdqG-eP_WxmCSk5ZB1EqET6d_w_LbLRnbamF36I1a3CSgf_sPRD9C-rz6DaXddDtGOqY7QsGd2CLyjH6N8at8r5ebm1msbyFUttBK2CV3O04E2HtK5_ICV5514DpZVYKEprldB1WHL7Ql6zO_mt_ehZ1wIFbSqTYixjDOBY5EQYRguo1QqCpY0XGBepsoopjOeKaxSQyMZZZoLVuosTXVJaWbwKRpUdWXOUCCYijV8ySJcEsOlhNJCUJKmDErQkkYjRHpNF8qPI3esGC9F7KeW9roqnK4Kr6sRmnyJvXbzOLYJ8O9mLJr2R0jZsZYUeIvsuLd54V3bFtAxQ0JPIkrP_7D1BdqDJWtfNSZjNGhWa3OJdtVbs7Srq_YSfwKixO0Q
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS8MwEA46BX1x_sTp1D742tk2aZM8DrFMnHuauLeQJqkMpJW2E_SvN2lT2RDZgz6W9kK55O67C3f3AXBNk0gQpbT3E0i5KPGhywkXruF5kVRowPdkTTaBJxMym9HlXhhTVmly6LQZFFH7amPc5jK6LYm70VE00nGyZyqz8EAjlsnxNsFWqLHWnPVp_Nx6YxSgmkXWiLhGpu3i-W2ZFXxamV76w1vXEBR3_-Pn98GeDUCdYXNiDsCGyg5BtyV3cKytH4F4WH5kwozOzRelkxQ5l4KXlWtgTzpS2arO-ad-stQTL848c0qdF-eFkzXl5eUxeIrvprcj15IuuEJnq5ULYeJHHPo8QFwRmHphIrDeTEU5pGkolCAyopGAIlTYS7xIUk5SGYWhTDGOFDwBnSzP1ClwOBG-1F8SD6ZI0STR0QXHKAyJjkJT7PUAalXNhJ1IbogxXplvB5e2umJGV8zqqgcG32JvzUiOdQJ0eR9ZVd-FpA1xCYNrZPvtpjNr3SXTSbPG9MDD-OwPS1-BndH0cczG95OHc7CrX5G6yTHog05VLNQF2Bbv1bwsLusT_QWXSPEw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA86Rbw4P3E6tQevnW2TNslxqEVRxg4TdwtpPmQg3Vg7Qf96kzYVh8gOeuzHC-W9vK_yy_sBcEmzRBClTPQTSPkoC6HPCRe-5XmRVJiEH8iKbAIPBmQ8pkOHJiwcrNL20LoeFFHFauvcM6kbRNyVKaKRKZMDC8zCPZOwbIu3DjbMvcSi-kbpcxOMUYQqElkr4luZ5hDPb8sspael4aU_gnWVgdL2P3z7Lthx5afXr_fLHlhT-T5oN9QOnvP0A5D2i_dc2MG500XhZfMpl4IXpW-TnvSkcpjOyYe5csQTL94k9wrTFU_nXl6Dy4tD8JTejq7vfEe54AvTq5Y-hFmYcBjyCHFFoA7iTGBjSkU5pDoWShCZ0ERAESscZEEiKSdaJnEsNcaJgkeglU9zdQw8TkQozZskgBopmmWmtuAYxTExNajGQQegRtNMuHnklhbjlYVubGmjK2Z1xZyuOqD3JTarB3KsEqDfzcjK6k-IrmlLGFwh221szpxvF8y0zCajRwHGJ39Y-gJsDW9S9ng_eDgF2-YJqU44Rl3QKucLdQY2xVs5Kebn1X7-BMR47-I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asynchronous+broadcast-based+decentralized+learning+in+sensor+networks&rft.jtitle=International+journal+of+parallel%2C+emergent+and+distributed+systems&rft.au=Zhao%2C+Liang&rft.au=Song%2C+Wen-Zhan&rft.au=Ye%2C+Xiaojing&rft.au=Gu%2C+Yujie&rft.date=2018-11-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1744-5760&rft.eissn=1744-5779&rft.volume=33&rft.issue=6&rft.spage=589&rft_id=info:doi/10.1080%2F17445760.2017.1294690&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-5760&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-5760&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-5760&client=summon