Asynchronous broadcast-based decentralized learning in sensor networks
In this paper, we study the problem of decentralized learning in sensor networks in which local learners estimate and reach consensus to the quantity of interest inferred globally while communicating only with their immediate neighbours. The main challenge lies in reducing the communication cost in...
Gespeichert in:
| Veröffentlicht in: | International journal of parallel, emergent and distributed systems Jg. 33; H. 6; S. 589 - 607 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Abingdon
Taylor & Francis
02.11.2018
Taylor & Francis Ltd |
| Schlagworte: | |
| ISSN: | 1744-5760, 1744-5779 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this paper, we study the problem of decentralized learning in sensor networks in which local learners estimate and reach consensus to the quantity of interest inferred globally while communicating only with their immediate neighbours. The main challenge lies in reducing the communication cost in the network, which involves inter-node synchronisation and data exchange. To address this issue, a novel asynchronous broadcast-based decentralized learning algorithm is proposed. Furthermore, we prove that the iterates generated by the developed decentralized method converge to a consensual optimal solution (model). Numerical results demonstrate that it is a promising approach for decentralized learning in sensor networks.
The execution model on a decentralized sensor network and the workflow of asynchronous computing. |
|---|---|
| AbstractList | In this paper, we study the problem of decentralized learning in sensor networks in which local learners estimate and reach consensus to the quantity of interest inferred globally while communicating only with their immediate neighbours. The main challenge lies in reducing the communication cost in the network, which involves inter-node synchronisation and data exchange. To address this issue, a novel asynchronous broadcast-based decentralized learning algorithm is proposed. Furthermore, we prove that the iterates generated by the developed decentralized method converge to a consensual optimal solution (model). Numerical results demonstrate that it is a promising approach for decentralized learning in sensor networks. In this paper, we study the problem of decentralized learning in sensor networks in which local learners estimate and reach consensus to the quantity of interest inferred globally while communicating only with their immediate neighbours. The main challenge lies in reducing the communication cost in the network, which involves inter-node synchronisation and data exchange. To address this issue, a novel asynchronous broadcast-based decentralized learning algorithm is proposed. Furthermore, we prove that the iterates generated by the developed decentralized method converge to a consensual optimal solution (model). Numerical results demonstrate that it is a promising approach for decentralized learning in sensor networks. The execution model on a decentralized sensor network and the workflow of asynchronous computing. |
| Author | Song, Wen-Zhan Ye, Xiaojing Gu, Yujie Zhao, Liang |
| Author_xml | – sequence: 1 givenname: Liang surname: Zhao fullname: Zhao, Liang email: lzhao2@ggc.edu organization: Department of Computer Science, Georgia State University – sequence: 2 givenname: Wen-Zhan surname: Song fullname: Song, Wen-Zhan organization: School of Electrical & Computer Engineering, University of Georgia – sequence: 3 givenname: Xiaojing surname: Ye fullname: Ye, Xiaojing organization: Department of Mathematics & Statistics, Georgia State University – sequence: 4 givenname: Yujie surname: Gu fullname: Gu, Yujie organization: Department of Electrical & Computer Engineering, Temple University |
| BookMark | eNqFkM1KAzEUhYMo2FYfQRhwPTWZTJIZ3FiKVaHgRtchk9xo6jSpyRSpT-8MrS5c6Or-cM653G-Mjn3wgNAFwVOCK3xFRFkywfG0wERMSVGXvMZHaDTscyZEffzTc3yKximtMC6LkosRWszSzuvXGHzYpqyJQRmtUpc3KoHJDGjwXVSt--ynFlT0zr9kzmcJfAox89B9hPiWztCJVW2C80OdoOfF7dP8Pl8-3j3MZ8tcU1p1OaUN4YoSVZQKKmoxa7QAEFArWlumQVeG11xTzUDgBnNTq8oazpixQnCgE3S5z93E8L6F1MlV2Ebfn5QFIaUgBRaiV13vVTqGlCJYqV2nOheGX1wrCZYDOPkNTg7g5AFc72a_3Jvo1iru_vXd7H3O2xDXqgfTGtmpXRuijcprlyT9O-ILKoaH5Q |
| CitedBy_id | crossref_primary_10_3390_s20216153 crossref_primary_10_1109_TSIPN_2018_2876751 crossref_primary_10_1109_TVT_2017_2704610 crossref_primary_10_3390_s19020301 crossref_primary_10_1109_TMC_2023_3320551 crossref_primary_10_1109_ACCESS_2019_2960494 crossref_primary_10_1016_j_dsp_2019_07_002 crossref_primary_10_1080_17445760_2018_1489538 |
| Cites_doi | 10.1016/j.jvolgeores.2007.06.008 10.1109/ICASSP.2012.6288575 10.1109/JSTSP.2011.2120593 10.1109/CDC.2013.6760448 10.1109/ACC.2012.6314986 10.1109/TAC.2010.2079650 10.1109/TAC.1986.1104412 10.1111/j.1365-246X.1987.tb00728.x 10.1109/TAC.2008.2009515 10.1109/GlobalSIP.2013.6736937 10.1145/2107736.2107740 10.1109/ISWPC.2008.4556312 10.1109/TSP.2009.2016247 10.1109/SFCS.2003.1238221 10.1109/BigData.2015.7363839 10.1109/CDC.2013.6760975 |
| ContentType | Journal Article |
| Copyright | 2017 Informa UK Limited, trading as Taylor & Francis Group 2017 2017 Informa UK Limited, trading as Taylor & Francis Group |
| Copyright_xml | – notice: 2017 Informa UK Limited, trading as Taylor & Francis Group 2017 – notice: 2017 Informa UK Limited, trading as Taylor & Francis Group |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1080/17445760.2017.1294690 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1744-5779 |
| EndPage | 607 |
| ExternalDocumentID | 10_1080_17445760_2017_1294690 1294690 |
| Genre | Article |
| GrantInformation_xml | – fundername: National Science Foundation grantid: 1125165; 1066391; 1442630 funderid: 10.13039/100000001 |
| GroupedDBID | .7F .QJ 0BK 0R~ 29J 30N 4.4 5GY AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACTIO ADCVX ADGTB ADXPE AEISY AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS EJD E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM M4Z NA5 NX~ O9- PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c338t-33b16a31a24ae83f05bc7ee7e9a39f5cec8d696c3c5e70b06d9a8fd655df776e3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000446126300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1744-5760 |
| IngestDate | Wed Aug 13 11:30:42 EDT 2025 Sat Nov 29 02:32:38 EST 2025 Tue Nov 18 20:02:29 EST 2025 Mon Oct 20 23:49:08 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c338t-33b16a31a24ae83f05bc7ee7e9a39f5cec8d696c3c5e70b06d9a8fd655df776e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2114712077 |
| PQPubID | 176139 |
| PageCount | 19 |
| ParticipantIDs | crossref_citationtrail_10_1080_17445760_2017_1294690 informaworld_taylorfrancis_310_1080_17445760_2017_1294690 crossref_primary_10_1080_17445760_2017_1294690 proquest_journals_2114712077 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-11-02 |
| PublicationDateYYYYMMDD | 2018-11-02 |
| PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-02 day: 02 |
| PublicationDecade | 2010 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon |
| PublicationTitle | International journal of parallel, emergent and distributed systems |
| PublicationYear | 2018 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | Boyd S (CIT0020) 2006; 14 CIT0021 CIT0001 CIT0012 CIT0023 Xiao L (CIT0007) 2005 CIT0011 CIT0003 CIT0014 CIT0025 CIT0002 CIT0013 Polyak BT (CIT0022) 1987 CIT0016 CIT0015 Terelius UTH (CIT0008) 2011; 18 CIT0018 Iyer HM (CIT0024) 1993 CIT0006 CIT0017 CIT0009 CIT0019 |
| References_xml | – volume-title: Proceedings of the 4th International Symposium on Information Processing in Sensor Networks, IPSN ’05, Los Angeles, California year: 2005 ident: CIT0007 – ident: CIT0023 doi: 10.1016/j.jvolgeores.2007.06.008 – ident: CIT0017 doi: 10.1109/ICASSP.2012.6288575 – ident: CIT0001 doi: 10.1109/JSTSP.2011.2120593 – ident: CIT0013 doi: 10.1109/CDC.2013.6760448 – volume: 14 start-page: 2508 year: 2006 ident: CIT0020 publication-title: IEEE/ACM Trans Networks – ident: CIT0006 doi: 10.1109/ACC.2012.6314986 – ident: CIT0009 – ident: CIT0019 doi: 10.1109/TAC.2010.2079650 – ident: CIT0014 doi: 10.1109/TAC.1986.1104412 – ident: CIT0025 doi: 10.1111/j.1365-246X.1987.tb00728.x – ident: CIT0002 doi: 10.1109/TAC.2008.2009515 – ident: CIT0012 doi: 10.1109/GlobalSIP.2013.6736937 – ident: CIT0021 doi: 10.1145/2107736.2107740 – volume-title: Imaging volcanoes using teleseismic tomography year: 1993 ident: CIT0024 – volume: 18 start-page: 11245 year: 2011 ident: CIT0008 publication-title: IFAC – ident: CIT0018 doi: 10.1109/ISWPC.2008.4556312 – ident: CIT0015 doi: 10.1109/TSP.2009.2016247 – volume-title: Introduction to optimization year: 1987 ident: CIT0022 – ident: CIT0016 doi: 10.1109/SFCS.2003.1238221 – ident: CIT0011 doi: 10.1109/BigData.2015.7363839 – ident: CIT0003 doi: 10.1109/CDC.2013.6760975 |
| SSID | ssj0042467 |
| Score | 2.20334 |
| Snippet | In this paper, we study the problem of decentralized learning in sensor networks in which local learners estimate and reach consensus to the quantity of... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 589 |
| SubjectTerms | Asynchronous algorithm big data Communication Data exchange decentralized learning Machine learning Mathematical models Networks Production planning sensor network Sensors |
| Title | Asynchronous broadcast-based decentralized learning in sensor networks |
| URI | https://www.tandfonline.com/doi/abs/10.1080/17445760.2017.1294690 https://www.proquest.com/docview/2114712077 |
| Volume | 33 |
| WOSCitedRecordID | wos000446126300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1744-5779 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0042467 issn: 1744-5760 databaseCode: TFW dateStart: 20050301 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yPHhxfuJ0Sg9eO9smbZLjEIun4WHibiVflYG0snSC_vW-tKk4RHbQY6AvhPfyvsov74fQNZeZYsZA9FPEhETGOBRMqNDxvGiuIOFHuiWboLMZWyz4g0cTWg-rdD102Q2KaGO1c24hbY-Iu4EimkCZHDlgFp1AwnItHkRhqOwdqG-eP_WxmCSk5ZB1EqET6d_w_LbLRnbamF36I1a3CSgf_sPRD9C-rz6DaXddDtGOqY7QsGd2CLyjH6N8at8r5ebm1msbyFUttBK2CV3O04E2HtK5_ICV5514DpZVYKEprldB1WHL7Ql6zO_mt_ehZ1wIFbSqTYixjDOBY5EQYRguo1QqCpY0XGBepsoopjOeKaxSQyMZZZoLVuosTXVJaWbwKRpUdWXOUCCYijV8ySJcEsOlhNJCUJKmDErQkkYjRHpNF8qPI3esGC9F7KeW9roqnK4Kr6sRmnyJvXbzOLYJ8O9mLJr2R0jZsZYUeIvsuLd54V3bFtAxQ0JPIkrP_7D1BdqDJWtfNSZjNGhWa3OJdtVbs7Srq_YSfwKixO0Q |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS8MwEA46BX1x_sTp1D742tk2aZM8DrFMnHuauLeQJqkMpJW2E_SvN2lT2RDZgz6W9kK55O67C3f3AXBNk0gQpbT3E0i5KPGhywkXruF5kVRowPdkTTaBJxMym9HlXhhTVmly6LQZFFH7amPc5jK6LYm70VE00nGyZyqz8EAjlsnxNsFWqLHWnPVp_Nx6YxSgmkXWiLhGpu3i-W2ZFXxamV76w1vXEBR3_-Pn98GeDUCdYXNiDsCGyg5BtyV3cKytH4F4WH5kwozOzRelkxQ5l4KXlWtgTzpS2arO-ad-stQTL848c0qdF-eFkzXl5eUxeIrvprcj15IuuEJnq5ULYeJHHPo8QFwRmHphIrDeTEU5pGkolCAyopGAIlTYS7xIUk5SGYWhTDGOFDwBnSzP1ClwOBG-1F8SD6ZI0STR0QXHKAyJjkJT7PUAalXNhJ1IbogxXplvB5e2umJGV8zqqgcG32JvzUiOdQJ0eR9ZVd-FpA1xCYNrZPvtpjNr3SXTSbPG9MDD-OwPS1-BndH0cczG95OHc7CrX5G6yTHog05VLNQF2Bbv1bwsLusT_QWXSPEw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA86Rbw4P3E6tQevnW2TNslxqEVRxg4TdwtpPmQg3Vg7Qf96kzYVh8gOeuzHC-W9vK_yy_sBcEmzRBClTPQTSPkoC6HPCRe-5XmRVJiEH8iKbAIPBmQ8pkOHJiwcrNL20LoeFFHFauvcM6kbRNyVKaKRKZMDC8zCPZOwbIu3DjbMvcSi-kbpcxOMUYQqElkr4luZ5hDPb8sspael4aU_gnWVgdL2P3z7Lthx5afXr_fLHlhT-T5oN9QOnvP0A5D2i_dc2MG500XhZfMpl4IXpW-TnvSkcpjOyYe5csQTL94k9wrTFU_nXl6Dy4tD8JTejq7vfEe54AvTq5Y-hFmYcBjyCHFFoA7iTGBjSkU5pDoWShCZ0ERAESscZEEiKSdaJnEsNcaJgkeglU9zdQw8TkQozZskgBopmmWmtuAYxTExNajGQQegRtNMuHnklhbjlYVubGmjK2Z1xZyuOqD3JTarB3KsEqDfzcjK6k-IrmlLGFwh221szpxvF8y0zCajRwHGJ39Y-gJsDW9S9ng_eDgF2-YJqU44Rl3QKucLdQY2xVs5Kebn1X7-BMR47-I |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asynchronous+broadcast-based+decentralized+learning+in+sensor+networks&rft.jtitle=International+journal+of+parallel%2C+emergent+and+distributed+systems&rft.au=Zhao%2C+Liang&rft.au=Song%2C+Wen-Zhan&rft.au=Ye%2C+Xiaojing&rft.au=Gu%2C+Yujie&rft.date=2018-11-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1744-5760&rft.eissn=1744-5779&rft.volume=33&rft.issue=6&rft.spage=589&rft_id=info:doi/10.1080%2F17445760.2017.1294690&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-5760&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-5760&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-5760&client=summon |