PIFHC: The Probabilistic Intuitionistic Fuzzy Hierarchical Clustering Algorithm
Hierarchical clustering techniques help in building a tree-like structure called dendrogram from the data points which can be used to find the closest related data objects. This paper presents a novel hierarchical clustering technique which considers intuitionistic fuzzy sets to deal with the uncert...
Uloženo v:
| Vydáno v: | Applied soft computing Ročník 120; s. 108584 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.05.2022
|
| Témata: | |
| ISSN: | 1568-4946, 1872-9681, 1872-9681 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Hierarchical clustering techniques help in building a tree-like structure called dendrogram from the data points which can be used to find the closest related data objects. This paper presents a novel hierarchical clustering technique which considers intuitionistic fuzzy sets to deal with the uncertainty present in the data. Instead of using traditional hamming distance or Euclidean distance measure to find the distance between the data points, it employs the probabilistic Euclidean distance measure to propose a novel clustering approach which we term as ‘Probabilistic Intuitionistic Fuzzy Hierarchical Clustering (PIFHC) Algorithm’. The proposed PIFHC algorithm considers probabilistic weights from the data to measure the distances between the data points. Clustering results over UCI datasets show that our proposed PIFHC algorithm gives better cluster accuracies than its existing counterparts. PIFHC efficiently provides improvements of 1%–3.5% in the clustering accuracy compared to other fuzzy hierarchical clustering algorithms for most of the datasets. We further provide experimental results with the real-world car dataset and the Listeria monocytogenes dataset for mouse susceptibility to demonstrate the practical efficacy of the proposed algorithm. For Listeria datasets as well, proposed PIFHC records 1.7% improvement against the state-of-the-art methods The dendrograms formed by the proposed PIFHC algorithm exhibits high cophenetic correlation coefficient with an improvement of 0.75% over others. We provide various AGNES methods to update the distance between merged clusters in the proposed PIFHC algorithm.
•This paper presents a novel hierarchical clustering approach based on intutionistic fuzzy sets.•The proposed approach is termed as ‘probabilistic intuitionistic fuzzy hierarchical clustering (PIFHC)” algorithm.•PIFHC employs probabilistic Euclidean distance measure with different probabilistic weights for its different components.•Also presents methods to compute the distances of the merged cluster from other clusters.•Conducts extensive experiments over a number of benchmark and real-world datasets to demonstrate PIFHC’s superiority over others. |
|---|---|
| AbstractList | Hierarchical clustering techniques help in building a tree-like structure called dendrogram from the data points which can be used to find the closest related data objects. This paper presents a novel hierarchical clustering technique which considers intuitionistic fuzzy sets to deal with the uncertainty present in the data. Instead of using traditional hamming distance or Euclidean distance measure to find the distance between the data points, it employs the probabilistic Euclidean distance measure to propose a novel clustering approach which we term as ‘Probabilistic Intuitionistic Fuzzy Hierarchical Clustering (PIFHC) Algorithm’. The proposed PIFHC algorithm considers probabilistic weights from the data to measure the distances between the data points. Clustering results over UCI datasets show that our proposed PIFHC algorithm gives better cluster accuracies than its existing counterparts. PIFHC efficiently provides improvements of 1%–3.5% in the clustering accuracy compared to other fuzzy hierarchical clustering algorithms for most of the datasets. We further provide experimental results with the real-world car dataset and the Listeria monocytogenes dataset for mouse susceptibility to demonstrate the practical efficacy of the proposed algorithm. For Listeria datasets as well, proposed PIFHC records 1.7% improvement against the state-of-the-art methods The dendrograms formed by the proposed PIFHC algorithm exhibits high cophenetic correlation coefficient with an improvement of 0.75% over others. We provide various AGNES methods to update the distance between merged clusters in the proposed PIFHC algorithm. Hierarchical clustering techniques help in building a tree-like structure called dendrogram from the data points which can be used to find the closest related data objects. This paper presents a novel hierarchical clustering technique which considers intuitionistic fuzzy sets to deal with the uncertainty present in the data. Instead of using traditional hamming distance or Euclidean distance measure to find the distance between the data points, it employs the probabilistic Euclidean distance measure to propose a novel clustering approach which we term as ‘Probabilistic Intuitionistic Fuzzy Hierarchical Clustering (PIFHC) Algorithm’. The proposed PIFHC algorithm considers probabilistic weights from the data to measure the distances between the data points. Clustering results over UCI datasets show that our proposed PIFHC algorithm gives better cluster accuracies than its existing counterparts. PIFHC efficiently provides improvements of 1%–3.5% in the clustering accuracy compared to other fuzzy hierarchical clustering algorithms for most of the datasets. We further provide experimental results with the real-world car dataset and the Listeria monocytogenes dataset for mouse susceptibility to demonstrate the practical efficacy of the proposed algorithm. For Listeria datasets as well, proposed PIFHC records 1.7% improvement against the state-of-the-art methods The dendrograms formed by the proposed PIFHC algorithm exhibits high cophenetic correlation coefficient with an improvement of 0.75% over others. We provide various AGNES methods to update the distance between merged clusters in the proposed PIFHC algorithm. •This paper presents a novel hierarchical clustering approach based on intutionistic fuzzy sets.•The proposed approach is termed as ‘probabilistic intuitionistic fuzzy hierarchical clustering (PIFHC)” algorithm.•PIFHC employs probabilistic Euclidean distance measure with different probabilistic weights for its different components.•Also presents methods to compute the distances of the merged cluster from other clusters.•Conducts extensive experiments over a number of benchmark and real-world datasets to demonstrate PIFHC’s superiority over others. |
| ArticleNumber | 108584 |
| Author | Muhuri, Pranab K. Danish Lohani, Q.M. Varshney, Ayush K. |
| Author_xml | – sequence: 1 givenname: Ayush K. surname: Varshney fullname: Varshney, Ayush K. – sequence: 2 givenname: Pranab K. orcidid: 0000-0001-7122-7622 surname: Muhuri fullname: Muhuri, Pranab K. email: pranabmuhuri@cs.sau.ac.in – sequence: 3 givenname: Q.M. surname: Danish Lohani fullname: Danish Lohani, Q.M. |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-196036$$DView record from Swedish Publication Index (Umeå universitet) |
| BookMark | eNp9kEFPwjAUxxuDiYB-AU_7AsO227rOeCEoQkICB_TadF0Hj4yVtJ1GP70lMx48kHd4r83_9_LyG6FBa1qN0D3BE4IJezhMpDNqQjGl4YNnPL1CQ8JzGheMk0GYM8bjtEjZDRo5d8ABKigfovVmOV_MHqPtXkcba0pZQgPOg4qWre_Ag2n757z7_v6KFqCttGoPSjbRrOmc1xbaXTRtdsaC3x9v0XUtG6fvfvsYvc1ftrNFvFq_LmfTVayShPuY6pSHKigt67ysK4KlxnVGc455LqWsygzXrFIqoTnJcpaHa3Wtq4qFNC7SZIzifq_71KeuFCcLR2m_hJEgnuF9Kozdie7YCVIwnLCQp31eWeOc1fUfQbA4KxQHcVYozgpFrzBA_B-kwMuzE28lNJfRpx7VQcJHsCacAt0qXYHVyovKwCX8B42Rj6o |
| CitedBy_id | crossref_primary_10_1177_14727978251355805 crossref_primary_10_1016_j_isci_2024_109892 crossref_primary_10_1007_s00357_025_09506_5 crossref_primary_10_1007_s10462_024_10751_0 crossref_primary_10_1007_s10462_022_10366_3 crossref_primary_10_1016_j_inffus_2023_102137 crossref_primary_10_3390_su16114840 crossref_primary_10_1155_2024_6696775 crossref_primary_10_1007_s10462_022_10236_y crossref_primary_10_1016_j_asoc_2023_110692 crossref_primary_10_3390_app122211342 crossref_primary_10_1007_s10462_023_10461_z crossref_primary_10_1109_ACCESS_2024_3486370 crossref_primary_10_1109_TFUZZ_2024_3456091 crossref_primary_10_3233_JIFS_235488 crossref_primary_10_3390_buildings12122109 crossref_primary_10_4018_IJISMD_373639 crossref_primary_10_1016_j_asoc_2022_109699 crossref_primary_10_1016_j_jobe_2023_106997 crossref_primary_10_1109_ACCESS_2024_3512416 crossref_primary_10_1007_s10489_024_05297_1 |
| Cites_doi | 10.1080/03081077908547452 10.1007/BF02289588 10.1109/91.995115 10.1016/j.knosys.2015.07.017 10.1016/S0165-0114(98)00244-9 10.1109/TFUZZ.2018.2848245 10.1002/int.21915 10.1080/00207721.2013.797037 10.1613/jair.279 10.1038/85812 10.1016/j.ins.2008.06.008 10.1016/j.eswa.2010.09.100 10.3969/j.issn.1004-4132.2010.04.009 10.1016/j.engappai.2017.02.005 10.1021/pr060343h 10.1177/002224298104500303 10.1016/S0165-0114(03)00072-1 10.1016/j.asoc.2020.106102 10.1109/TFUZZ.2004.840134 10.1016/0098-3004(84)90020-7 10.1016/S0165-0114(86)80034-3 10.1016/j.engappai.2018.09.002 10.2307/1217208 10.1016/j.knosys.2012.08.019 10.1007/BF02294089 10.1109/91.811242 10.1016/j.jvolgeores.2016.04.014 10.1109/TFUZZ.2011.2164256 10.1016/S0019-9958(65)90241-X 10.1002/int.21807 10.1007/978-3-7908-1870-3_2 10.1007/s11766-014-3091-8 10.1007/s11042-018-5954-0 10.1016/j.eswa.2010.07.076 10.1016/S0019-9958(80)90156-4 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. |
| Copyright_xml | – notice: 2022 Elsevier B.V. |
| DBID | AAYXX CITATION ADTPV AOWAS D93 |
| DOI | 10.1016/j.asoc.2022.108584 |
| DatabaseName | CrossRef SwePub SwePub Articles SWEPUB Umeå universitet |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| ExternalDocumentID | oai_DiVA_org_umu_196036 10_1016_j_asoc_2022_108584 S1568494622000977 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD ADTPV AOWAS D93 |
| ID | FETCH-LOGICAL-c338t-2e48484922bf7bfd10ae0f5278087aaadb50f6dcc32715767692efedd67bf0943 |
| ISICitedReferencesCount | 26 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000821070000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1568-4946 1872-9681 |
| IngestDate | Tue Nov 04 16:55:20 EST 2025 Tue Nov 18 21:26:37 EST 2025 Sat Nov 29 07:05:26 EST 2025 Fri Feb 23 02:41:03 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Intuitionistic fuzzy sets Probabilistic Euclidean distance measure Fuzzy clustering Hierarchical clustering Probabilistic intuitionistic fuzzy hierarchical clustering algorithm Probabilistic weights |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c338t-2e48484922bf7bfd10ae0f5278087aaadb50f6dcc32715767692efedd67bf0943 |
| ORCID | 0000-0001-7122-7622 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_umu_196036 crossref_primary_10_1016_j_asoc_2022_108584 crossref_citationtrail_10_1016_j_asoc_2022_108584 elsevier_sciencedirect_doi_10_1016_j_asoc_2022_108584 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-01 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Bang, Lee (b9) 2011; 38 Miin-Shen, Hwang, Chen (b30) 2004; 141 Benjamin, Banfer, Nelles, Sodja, Teslic, Skrjanc (b33) 2011; 19 Szmidt, Kacprzyk (b42) 2000; 114 Mirkin (b2) 2013 Unglert, Radić, Jellinek (b8) 2016; 320 Atanassov (b16) 1986; 20 Xiaolu (b31) 2018; 33 Gómez, Yáñez, Guada, Rodríguez, Montero, Zarrazola (b10) 2015; 87 K.W. Broman, V.L. Boyartchuk, W.F. Dietrich, Mapping Time-To-Death Quantitative Trait Loci in a Mouse Cross with High Survival Rates, Technical Report MS00-04, Department of Biostatistics, Johns Hopkins University. Srivastava, Leone, Shocker (b4) 1981; 45 Höppner, Klawonn, Kruse, Runkler (b3) 1999 Xu, Chen, Wu (b46) 2008; 178 Bezdek, Ehrlich, Full (b15) 1984; 10 Amir (b25) 1999; 7 Aliahmadipour, Eslami (b22) 2016; 31 Johnson (b5) 1967; 32 Meunier, Dumas, Piec, Bechet, Hebraud, Hocquette (b12) 2007; 6 Sukanya, Biruntha (b11) 2012 Zeshui (b21) 2009; 20 Ruiz, Isaza, Agudelo, Agudelo (b40) 2017; 60 Torra (b35) 2010; 25 Torra (b28) 2005 Xiaolu, Xu (b34) 2015; 46 Shukla, Muhuri (b51) 2019; 77 Inti, Pastore, Abras, Brun, Ballarin (b48) 2017; 109 Zadeh (b14) 1965; 8 Pan, Shang, Shen (b37) 2015; 28 Boyartchuk, Broman, Mosher, D’Orazio, Starnbach, Dietrich (b44) 2001; 27 Mohammad, Yazdi, Monsefi (b29) 2010; 2 Na, Xu, Xia (b36) 2014; 29 Horng, Chen, Chang, Lee (b7) 2005; 13 Valderrama, Valderrama (b39) 2020; 89 D. Dubois, H. Prade, On distances between fuzzy points and their use for plausible reasoning, in: International Conference on Systems, Man and Cybernetics, 1983, pp. 300–303. Xu, Wu (b17) 2010; 21 Atanassov T. Krassimir, Interval valued intuitionistic fuzzy sets, in: Intuitionistic Fuzzy Sets, in: Physica, Heidelberg, 1999, pp. 139–177. Varshney, Danish Lohani, Muhuri (b20) 2020 Gang, Wang, Feng (b38) 2013; 37 Robert, James Rohlf (b47) 1962; 11 Mendel, John (b50) 2002; 10 Bezdek (b1) 2013 Yager (b23) 1979; 5 Yager (b24) 1980; 44 D’Andrade (b6) 1978; 43 Asuncion, Newman (b43) 2007 Danish, Solanki, Pranab (b19) 2018; 26 Kaufman, Rousseeuw (b13) 2009 Kumar, Verma, Mehra, Agrawal (b18) 2019; 78 Ronald (b32) 2013; 22 Ross (b27) 1996; 4 Shih-Cheng, Yang, Lin (b26) 2011; 38 Höppner (10.1016/j.asoc.2022.108584_b3) 1999 Johnson (10.1016/j.asoc.2022.108584_b5) 1967; 32 10.1016/j.asoc.2022.108584_b41 Yager (10.1016/j.asoc.2022.108584_b23) 1979; 5 Mirkin (10.1016/j.asoc.2022.108584_b2) 2013 10.1016/j.asoc.2022.108584_b45 Unglert (10.1016/j.asoc.2022.108584_b8) 2016; 320 Shukla (10.1016/j.asoc.2022.108584_b51) 2019; 77 Kumar (10.1016/j.asoc.2022.108584_b18) 2019; 78 10.1016/j.asoc.2022.108584_b49 Gómez (10.1016/j.asoc.2022.108584_b10) 2015; 87 Mohammad (10.1016/j.asoc.2022.108584_b29) 2010; 2 Amir (10.1016/j.asoc.2022.108584_b25) 1999; 7 Miin-Shen (10.1016/j.asoc.2022.108584_b30) 2004; 141 Xu (10.1016/j.asoc.2022.108584_b46) 2008; 178 Ruiz (10.1016/j.asoc.2022.108584_b40) 2017; 60 Atanassov (10.1016/j.asoc.2022.108584_b16) 1986; 20 Zadeh (10.1016/j.asoc.2022.108584_b14) 1965; 8 Sukanya (10.1016/j.asoc.2022.108584_b11) 2012 Varshney (10.1016/j.asoc.2022.108584_b20) 2020 Srivastava (10.1016/j.asoc.2022.108584_b4) 1981; 45 Danish (10.1016/j.asoc.2022.108584_b19) 2018; 26 Pan (10.1016/j.asoc.2022.108584_b37) 2015; 28 Ross (10.1016/j.asoc.2022.108584_b27) 1996; 4 Inti (10.1016/j.asoc.2022.108584_b48) 2017; 109 Bang (10.1016/j.asoc.2022.108584_b9) 2011; 38 Kaufman (10.1016/j.asoc.2022.108584_b13) 2009 Na (10.1016/j.asoc.2022.108584_b36) 2014; 29 Benjamin (10.1016/j.asoc.2022.108584_b33) 2011; 19 Szmidt (10.1016/j.asoc.2022.108584_b42) 2000; 114 Torra (10.1016/j.asoc.2022.108584_b28) 2005 Meunier (10.1016/j.asoc.2022.108584_b12) 2007; 6 Zeshui (10.1016/j.asoc.2022.108584_b21) 2009; 20 Yager (10.1016/j.asoc.2022.108584_b24) 1980; 44 Robert (10.1016/j.asoc.2022.108584_b47) 1962; 11 D’Andrade (10.1016/j.asoc.2022.108584_b6) 1978; 43 Bezdek (10.1016/j.asoc.2022.108584_b15) 1984; 10 Xu (10.1016/j.asoc.2022.108584_b17) 2010; 21 Asuncion (10.1016/j.asoc.2022.108584_b43) 2007 Shih-Cheng (10.1016/j.asoc.2022.108584_b26) 2011; 38 Xiaolu (10.1016/j.asoc.2022.108584_b31) 2018; 33 Gang (10.1016/j.asoc.2022.108584_b38) 2013; 37 Torra (10.1016/j.asoc.2022.108584_b35) 2010; 25 Horng (10.1016/j.asoc.2022.108584_b7) 2005; 13 Ronald (10.1016/j.asoc.2022.108584_b32) 2013; 22 Bezdek (10.1016/j.asoc.2022.108584_b1) 2013 Mendel (10.1016/j.asoc.2022.108584_b50) 2002; 10 Valderrama (10.1016/j.asoc.2022.108584_b39) 2020; 89 Boyartchuk (10.1016/j.asoc.2022.108584_b44) 2001; 27 Aliahmadipour (10.1016/j.asoc.2022.108584_b22) 2016; 31 Xiaolu (10.1016/j.asoc.2022.108584_b34) 2015; 46 |
| References_xml | – volume: 7 start-page: 723 year: 1999 end-page: 733 ident: b25 article-title: Hierarchical unsupervised fuzzy clustering publication-title: IEEE Trans. Fuzzy Syst. – year: 2007 ident: b43 article-title: UCI machine learning repository – volume: 29 start-page: 1 year: 2014 end-page: 17 ident: b36 article-title: Hierarchical hesitant fuzzy K-means clustering algorithm publication-title: Appl. Math. A J. Chinese Univ. – reference: D. Dubois, H. Prade, On distances between fuzzy points and their use for plausible reasoning, in: International Conference on Systems, Man and Cybernetics, 1983, pp. 300–303. – volume: 11 start-page: 33 year: 1962 end-page: 40 ident: b47 article-title: The comparison of dendrograms by objective methods publication-title: Taxon – volume: 38 start-page: 933 year: 2011 end-page: 940 ident: b26 article-title: Hierarchical fuzzy clustering decision tree for classifying recipes of ion implanter publication-title: Expert Syst. Appl. – volume: 43 start-page: 59 year: 1978 end-page: 67 ident: b6 article-title: U-statistic hierarchical clustering publication-title: Psychometrika – volume: 22 start-page: 958 year: 2013 end-page: 965 ident: b32 article-title: Pythagorean membership grades in multicriteria decision making publication-title: IEEE Trans. Fuzzy Syst. – volume: 25 start-page: 529 year: 2010 end-page: 539 ident: b35 article-title: Hesitant fuzzy sets publication-title: Int. J. Intell. Syst. – volume: 109 start-page: 438 year: 2017 end-page: 445 ident: b48 article-title: Analysis of genetic association using hierarchical clustering and cluster validation indices publication-title: Genomics – volume: 320 start-page: 58 year: 2016 end-page: 74 ident: b8 article-title: Principal component analysis vs. self-organizing maps combined with hierarchical clustering for pattern recognition in volcano seismic spectra publication-title: J. Volcanol. Geotherm. Res. – start-page: 269 year: 2012 end-page: 271 ident: b11 article-title: Techniques on text mining publication-title: 2012 IEEE International Conference on Advanced Communication Control and Computing Technologies – reference: Atanassov T. Krassimir, Interval valued intuitionistic fuzzy sets, in: Intuitionistic Fuzzy Sets, in: Physica, Heidelberg, 1999, pp. 139–177. – volume: 20 start-page: 87 year: 1986 end-page: 96 ident: b16 article-title: Intuitionistic fuzzy sets publication-title: Fuzzy Sets and Systems – volume: 6 start-page: 358 year: 2007 end-page: 366 ident: b12 article-title: Assessment of hierarchical clustering methodologies for proteomic data mining publication-title: J. Proteome Res. – volume: 28 start-page: 2409 year: 2015 end-page: 2421 ident: b37 article-title: A hierarchical fuzzy cluster ensemble approach and its application to big data clustering publication-title: J. Intell. Fuzzy Systems – volume: 78 start-page: 12663 year: 2019 end-page: 12687 ident: b18 article-title: A modified intuitionistic fuzzy c-means clustering approach to segment human brain MRI image publication-title: Multimedia Tools Appl. – volume: 32 start-page: 241 year: 1967 end-page: 254 ident: b5 article-title: Hierarchical clustering schemes publication-title: Psychometrika – volume: 21 start-page: 580 year: 2010 end-page: 590 ident: b17 article-title: Intuitionistic fuzzy c-means clustering algorithms publication-title: J. Syst. Eng. Electron. – volume: 4 start-page: 77 year: 1996 end-page: 90 ident: b27 article-title: Improved use of continuous attributes in C4. 5 publication-title: J. Artif. Intell. Res. – volume: 77 start-page: 268 year: 2019 end-page: 282 ident: b51 article-title: Big-data clustering with interval type-2 fuzzy uncertainty modeling in gene expression datasets publication-title: Eng. Appl. Artif. Intell. – start-page: 1 year: 2020 end-page: 6 ident: b20 article-title: Improved probabilistic intuitionistic fuzzy c-means clustering algorithm: Improved PIFCM publication-title: 2020 IEEE International Conference on Fuzzy Systems – volume: 27 start-page: 259 year: 2001 end-page: 260 ident: b44 article-title: Multigenetic control of listeria monocytogenes susceptibility in mice publication-title: Nat. Genet. – volume: 60 start-page: 117 year: 2017 end-page: 127 ident: b40 article-title: A new criterion to validate and improve the classification process of LAMDA algorithm applied to diesel engines publication-title: Eng. Appl. Artif. Intell. – volume: 46 start-page: 562 year: 2015 end-page: 576 ident: b34 article-title: Hesitant fuzzy agglomerative hierarchical clustering algorithms publication-title: Internat. J. Systems Sci. – volume: 20 start-page: 90 year: 2009 end-page: 97 ident: b21 article-title: Intuitionistic fuzzy hierarchical clustering algorithms publication-title: J. Syst. Eng. Electron. – volume: 141 start-page: 301 year: 2004 end-page: 317 ident: b30 article-title: Fuzzy clustering algorithms for mixed feature variables publication-title: Fuzzy Sets and Systems – volume: 33 start-page: 1798 year: 2018 end-page: 1822 ident: b31 article-title: Pythagorean fuzzy clustering analysis: a hierarchical clustering algorithm with the ratio index-based ranking methods publication-title: Int. J. Intell. Syst. – volume: 38 start-page: 4312 year: 2011 end-page: 4325 ident: b9 article-title: Fuzzy time series prediction using hierarchical clustering algorithms publication-title: Expert Syst. Appl. – volume: 31 start-page: 855 year: 2016 end-page: 871 ident: b22 article-title: GHFHC: generalized hesitant fuzzy hierarchical clustering algorithm publication-title: Int. J. Intell. Syst. – volume: 114 start-page: 505 year: 2000 end-page: 518 ident: b42 article-title: Distances between intuitionistic fuzzy sets publication-title: Fuzzy Sets and Systems – volume: 10 start-page: 117 year: 2002 end-page: 127 ident: b50 article-title: Type-2 fuzzy sets made simple publication-title: IEEE Trans. Fuzzy Syst. – year: 2013 ident: b2 article-title: Mathematical Classification and Clustering, Vol. 11 – volume: 5 start-page: 221 year: 1979 end-page: 229 ident: b23 article-title: On the measure of fuzziness and negation. Part I: Membership in the unit interval publication-title: Int. J. Gen. Syst. – volume: 19 start-page: 1163 year: 2011 end-page: 1176 ident: b33 article-title: Supervised hierarchical clustering in fuzzy model identification publication-title: IEEE Trans. Fuzzy Syst. – start-page: 646 year: 2005 end-page: 651 ident: b28 article-title: Fuzzy c-means for fuzzy hierarchical clustering publication-title: The 14th IEEE International Conference on Fuzzy Systems, 2005 – volume: 13 start-page: 216 year: 2005 end-page: 228 ident: b7 article-title: A new method for fuzzy information retrieval based on fuzzy hierarchical clustering and fuzzy inference techniques publication-title: IEEE Trans. Fuzzy Syst. – volume: 89 year: 2020 ident: b39 article-title: Two cluster validity indices for the LAMDA clustering method publication-title: Appl. Soft Comput. – year: 1999 ident: b3 article-title: Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Image Recognition – volume: 87 start-page: 26 year: 2015 end-page: 37 ident: b10 article-title: Fuzzy image segmentation based upon hierarchical clustering publication-title: Knowl.-Based Syst. – volume: 10 start-page: 191 year: 1984 end-page: 203 ident: b15 article-title: FCM: The fuzzy c-means clustering algorithm publication-title: Comput. Geosci. – volume: 2 start-page: 1793 year: 2010 end-page: 8163 ident: b29 article-title: A new hierarchical clustering algorithm on fuzzy data (FHCA) publication-title: Int. J. Comput. Electr. Eng. – volume: 45 start-page: 38 year: 1981 end-page: 48 ident: b4 article-title: Market structure analysis: hierarchical clustering of products based on substitution-in-use publication-title: J. Mark. – year: 2009 ident: b13 article-title: Finding Groups in Data: An Introduction to Cluster Analysis, Vol. 344 – volume: 44 start-page: 236 year: 1980 end-page: 260 ident: b24 article-title: On the measure of fuzziness and negation. II. lattices publication-title: Inf. Control – volume: 178 start-page: 3775 year: 2008 end-page: 3790 ident: b46 article-title: Clustering algorithm for intuitionistic fuzzy sets publication-title: Inform. Sci. – volume: 37 start-page: 357 year: 2013 end-page: 365 ident: b38 article-title: Generalized hesitant fuzzy sets and their application in decision support system publication-title: Knowl.-Based Syst. – reference: K.W. Broman, V.L. Boyartchuk, W.F. Dietrich, Mapping Time-To-Death Quantitative Trait Loci in a Mouse Cross with High Survival Rates, Technical Report MS00-04, Department of Biostatistics, Johns Hopkins University. – volume: 8 start-page: 338 year: 1965 end-page: 353 ident: b14 article-title: Fuzzy sets publication-title: Inf. Control – volume: 26 start-page: 3715 year: 2018 end-page: 3729 ident: b19 article-title: Novel adaptive clustering algorithms based on a probabilistic similarity measure over atanassov intuitionistic fuzzy set publication-title: IEEE Trans. Fuzzy Syst. – year: 2013 ident: b1 article-title: Pattern Recognition with Fuzzy Objective Function Algorithms – volume: 5 start-page: 221 year: 1979 ident: 10.1016/j.asoc.2022.108584_b23 article-title: On the measure of fuzziness and negation. Part I: Membership in the unit interval publication-title: Int. J. Gen. Syst. doi: 10.1080/03081077908547452 – volume: 32 start-page: 241 issue: 3 year: 1967 ident: 10.1016/j.asoc.2022.108584_b5 article-title: Hierarchical clustering schemes publication-title: Psychometrika doi: 10.1007/BF02289588 – volume: 10 start-page: 117 issue: 2 year: 2002 ident: 10.1016/j.asoc.2022.108584_b50 article-title: Type-2 fuzzy sets made simple publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/91.995115 – volume: 87 start-page: 26 year: 2015 ident: 10.1016/j.asoc.2022.108584_b10 article-title: Fuzzy image segmentation based upon hierarchical clustering publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.07.017 – volume: 114 start-page: 505 issue: 3 year: 2000 ident: 10.1016/j.asoc.2022.108584_b42 article-title: Distances between intuitionistic fuzzy sets publication-title: Fuzzy Sets and Systems doi: 10.1016/S0165-0114(98)00244-9 – ident: 10.1016/j.asoc.2022.108584_b45 – volume: 26 start-page: 3715 issue: 6 year: 2018 ident: 10.1016/j.asoc.2022.108584_b19 article-title: Novel adaptive clustering algorithms based on a probabilistic similarity measure over atanassov intuitionistic fuzzy set publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2018.2848245 – volume: 33 start-page: 1798 issue: 9 year: 2018 ident: 10.1016/j.asoc.2022.108584_b31 article-title: Pythagorean fuzzy clustering analysis: a hierarchical clustering algorithm with the ratio index-based ranking methods publication-title: Int. J. Intell. Syst. doi: 10.1002/int.21915 – ident: 10.1016/j.asoc.2022.108584_b41 – volume: 46 start-page: 562 issue: 3 year: 2015 ident: 10.1016/j.asoc.2022.108584_b34 article-title: Hesitant fuzzy agglomerative hierarchical clustering algorithms publication-title: Internat. J. Systems Sci. doi: 10.1080/00207721.2013.797037 – volume: 4 start-page: 77 year: 1996 ident: 10.1016/j.asoc.2022.108584_b27 article-title: Improved use of continuous attributes in C4. 5 publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.279 – volume: 2 start-page: 1793 issue: 1 year: 2010 ident: 10.1016/j.asoc.2022.108584_b29 article-title: A new hierarchical clustering algorithm on fuzzy data (FHCA) publication-title: Int. J. Comput. Electr. Eng. – volume: 27 start-page: 259 year: 2001 ident: 10.1016/j.asoc.2022.108584_b44 article-title: Multigenetic control of listeria monocytogenes susceptibility in mice publication-title: Nat. Genet. doi: 10.1038/85812 – volume: 22 start-page: 958 issue: 4 year: 2013 ident: 10.1016/j.asoc.2022.108584_b32 article-title: Pythagorean membership grades in multicriteria decision making publication-title: IEEE Trans. Fuzzy Syst. – volume: 178 start-page: 3775 issue: 19 year: 2008 ident: 10.1016/j.asoc.2022.108584_b46 article-title: Clustering algorithm for intuitionistic fuzzy sets publication-title: Inform. Sci. doi: 10.1016/j.ins.2008.06.008 – year: 1999 ident: 10.1016/j.asoc.2022.108584_b3 – volume: 38 start-page: 4312 issue: 4 year: 2011 ident: 10.1016/j.asoc.2022.108584_b9 article-title: Fuzzy time series prediction using hierarchical clustering algorithms publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.09.100 – volume: 28 start-page: 2409 issue: 6 year: 2015 ident: 10.1016/j.asoc.2022.108584_b37 article-title: A hierarchical fuzzy cluster ensemble approach and its application to big data clustering publication-title: J. Intell. Fuzzy Systems – volume: 21 start-page: 580 issue: 4 year: 2010 ident: 10.1016/j.asoc.2022.108584_b17 article-title: Intuitionistic fuzzy c-means clustering algorithms publication-title: J. Syst. Eng. Electron. doi: 10.3969/j.issn.1004-4132.2010.04.009 – volume: 60 start-page: 117 year: 2017 ident: 10.1016/j.asoc.2022.108584_b40 article-title: A new criterion to validate and improve the classification process of LAMDA algorithm applied to diesel engines publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2017.02.005 – volume: 109 start-page: 438 issue: 5–6 year: 2017 ident: 10.1016/j.asoc.2022.108584_b48 article-title: Analysis of genetic association using hierarchical clustering and cluster validation indices publication-title: Genomics – volume: 6 start-page: 358 issue: 1 year: 2007 ident: 10.1016/j.asoc.2022.108584_b12 article-title: Assessment of hierarchical clustering methodologies for proteomic data mining publication-title: J. Proteome Res. doi: 10.1021/pr060343h – volume: 45 start-page: 38 issue: 3 year: 1981 ident: 10.1016/j.asoc.2022.108584_b4 article-title: Market structure analysis: hierarchical clustering of products based on substitution-in-use publication-title: J. Mark. doi: 10.1177/002224298104500303 – volume: 141 start-page: 301 issue: 2 year: 2004 ident: 10.1016/j.asoc.2022.108584_b30 article-title: Fuzzy clustering algorithms for mixed feature variables publication-title: Fuzzy Sets and Systems doi: 10.1016/S0165-0114(03)00072-1 – volume: 89 year: 2020 ident: 10.1016/j.asoc.2022.108584_b39 article-title: Two cluster validity indices for the LAMDA clustering method publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106102 – volume: 13 start-page: 216 issue: 2 year: 2005 ident: 10.1016/j.asoc.2022.108584_b7 article-title: A new method for fuzzy information retrieval based on fuzzy hierarchical clustering and fuzzy inference techniques publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2004.840134 – volume: 10 start-page: 191 issue: 2–3 year: 1984 ident: 10.1016/j.asoc.2022.108584_b15 article-title: FCM: The fuzzy c-means clustering algorithm publication-title: Comput. Geosci. doi: 10.1016/0098-3004(84)90020-7 – volume: 20 start-page: 87 issue: 1 year: 1986 ident: 10.1016/j.asoc.2022.108584_b16 article-title: Intuitionistic fuzzy sets publication-title: Fuzzy Sets and Systems doi: 10.1016/S0165-0114(86)80034-3 – volume: 20 start-page: 90 issue: 1 year: 2009 ident: 10.1016/j.asoc.2022.108584_b21 article-title: Intuitionistic fuzzy hierarchical clustering algorithms publication-title: J. Syst. Eng. Electron. – volume: 77 start-page: 268 year: 2019 ident: 10.1016/j.asoc.2022.108584_b51 article-title: Big-data clustering with interval type-2 fuzzy uncertainty modeling in gene expression datasets publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2018.09.002 – year: 2007 ident: 10.1016/j.asoc.2022.108584_b43 – volume: 11 start-page: 33 issue: 2 year: 1962 ident: 10.1016/j.asoc.2022.108584_b47 article-title: The comparison of dendrograms by objective methods publication-title: Taxon doi: 10.2307/1217208 – start-page: 269 year: 2012 ident: 10.1016/j.asoc.2022.108584_b11 article-title: Techniques on text mining – volume: 37 start-page: 357 year: 2013 ident: 10.1016/j.asoc.2022.108584_b38 article-title: Generalized hesitant fuzzy sets and their application in decision support system publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2012.08.019 – year: 2009 ident: 10.1016/j.asoc.2022.108584_b13 – year: 2013 ident: 10.1016/j.asoc.2022.108584_b1 – volume: 43 start-page: 59 issue: 1 year: 1978 ident: 10.1016/j.asoc.2022.108584_b6 article-title: U-statistic hierarchical clustering publication-title: Psychometrika doi: 10.1007/BF02294089 – volume: 7 start-page: 723 issue: 6 year: 1999 ident: 10.1016/j.asoc.2022.108584_b25 article-title: Hierarchical unsupervised fuzzy clustering publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/91.811242 – volume: 320 start-page: 58 year: 2016 ident: 10.1016/j.asoc.2022.108584_b8 article-title: Principal component analysis vs. self-organizing maps combined with hierarchical clustering for pattern recognition in volcano seismic spectra publication-title: J. Volcanol. Geotherm. Res. doi: 10.1016/j.jvolgeores.2016.04.014 – volume: 19 start-page: 1163 issue: 6 year: 2011 ident: 10.1016/j.asoc.2022.108584_b33 article-title: Supervised hierarchical clustering in fuzzy model identification publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2011.2164256 – volume: 8 start-page: 338 issue: 3 year: 1965 ident: 10.1016/j.asoc.2022.108584_b14 article-title: Fuzzy sets publication-title: Inf. Control doi: 10.1016/S0019-9958(65)90241-X – volume: 31 start-page: 855 issue: 9 year: 2016 ident: 10.1016/j.asoc.2022.108584_b22 article-title: GHFHC: generalized hesitant fuzzy hierarchical clustering algorithm publication-title: Int. J. Intell. Syst. doi: 10.1002/int.21807 – volume: 25 start-page: 529 issue: 6 year: 2010 ident: 10.1016/j.asoc.2022.108584_b35 article-title: Hesitant fuzzy sets publication-title: Int. J. Intell. Syst. – year: 2013 ident: 10.1016/j.asoc.2022.108584_b2 – start-page: 1 year: 2020 ident: 10.1016/j.asoc.2022.108584_b20 article-title: Improved probabilistic intuitionistic fuzzy c-means clustering algorithm: Improved PIFCM – ident: 10.1016/j.asoc.2022.108584_b49 doi: 10.1007/978-3-7908-1870-3_2 – start-page: 646 year: 2005 ident: 10.1016/j.asoc.2022.108584_b28 article-title: Fuzzy c-means for fuzzy hierarchical clustering – volume: 29 start-page: 1 issue: 1 year: 2014 ident: 10.1016/j.asoc.2022.108584_b36 article-title: Hierarchical hesitant fuzzy K-means clustering algorithm publication-title: Appl. Math. A J. Chinese Univ. doi: 10.1007/s11766-014-3091-8 – volume: 78 start-page: 12663 issue: 10 year: 2019 ident: 10.1016/j.asoc.2022.108584_b18 article-title: A modified intuitionistic fuzzy c-means clustering approach to segment human brain MRI image publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-018-5954-0 – volume: 38 start-page: 933 issue: 1 year: 2011 ident: 10.1016/j.asoc.2022.108584_b26 article-title: Hierarchical fuzzy clustering decision tree for classifying recipes of ion implanter publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.07.076 – volume: 44 start-page: 236 issue: 3 year: 1980 ident: 10.1016/j.asoc.2022.108584_b24 article-title: On the measure of fuzziness and negation. II. lattices publication-title: Inf. Control doi: 10.1016/S0019-9958(80)90156-4 |
| SSID | ssj0016928 |
| Score | 2.4731178 |
| Snippet | Hierarchical clustering techniques help in building a tree-like structure called dendrogram from the data points which can be used to find the closest related... |
| SourceID | swepub crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 108584 |
| SubjectTerms | Fuzzy clustering Hierarchical clustering Intuitionistic fuzzy sets Probabilistic Euclidean distance measure Probabilistic intuitionistic fuzzy hierarchical clustering algorithm Probabilistic weights |
| Title | PIFHC: The Probabilistic Intuitionistic Fuzzy Hierarchical Clustering Algorithm |
| URI | https://dx.doi.org/10.1016/j.asoc.2022.108584 https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-196036 |
| Volume | 120 |
| WOSCitedRecordID | wos000821070000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection - Elsevier customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIEXJ dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwELWAcuDCjiibekBcqkRNmsTOsWIRu4oEqDfLdhwKgrRqGgR_z3hJqNgEBxQpShw7yzxnPE5m5iG0245ChlMBCAihQ3KEw_0gdALuYSE4ITwQmmwCX16SXi_u2mSfuaYTwFlGXl7i4b9CDWUAtgqd_QPc1UmhALYBdFgD7LD-FfDdk6Pj_UmbszQ0c9C42oW8GJfjlWbaGuV96_LVeS3yfvPMfUehX5hI9C4MaYxPHFKh6VD3fNA3pFDNK_fCnfyEALPPymGv1HoRcYLYfgss1aIOUvusYs1s_8Fl0HtcdTblphganrcvUlcf3N926GB0R4ungsLrDiPmNKr5OIxBB9U6J4e90-qvTxRrLtzqdtQ2wb4TR8SzAU_GN-_jtb81Kiazv2qL4XoRzVtTv9ExEC2hKZkto4WSRqNhteoKqmnEVtHN0eH1_rFj2SkcAdP6sePLgMAS-z5PMU8Tr8VkKw19TFoEM8YSHrbSKBGi7WMPZnUYnk6mMkkiqK38OdfQTDbI5DpqJFzZbZzEqQwCJiLYZVJCmefhtpC8jrzy8aiwqdsVg8gjLX30HqgSCVUioUYkddSs2gxN4pIfa4el1Kg1vYxJRQH2H9vtGRFX1_gG843fVtxEc-9ddAvNjEeF3Eaz4nl8n492bI95A_2mVo8 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PIFHC&rft.jtitle=Applied+soft+computing&rft.au=Varshney%2C+Ayush+K.&rft.au=Muhuri%2C+Pranab+K.&rft.au=Danish+Lohani%2C+Q.M.&rft.date=2022-05-01&rft.issn=1568-4946&rft.volume=120&rft_id=info:doi/10.1016%2Fj.asoc.2022.108584&rft.externalDocID=oai_DiVA_org_umu_196036 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |