PIFHC: The Probabilistic Intuitionistic Fuzzy Hierarchical Clustering Algorithm

Hierarchical clustering techniques help in building a tree-like structure called dendrogram from the data points which can be used to find the closest related data objects. This paper presents a novel hierarchical clustering technique which considers intuitionistic fuzzy sets to deal with the uncert...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied soft computing Ročník 120; s. 108584
Hlavní autoři: Varshney, Ayush K., Muhuri, Pranab K., Danish Lohani, Q.M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.05.2022
Témata:
ISSN:1568-4946, 1872-9681, 1872-9681
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Hierarchical clustering techniques help in building a tree-like structure called dendrogram from the data points which can be used to find the closest related data objects. This paper presents a novel hierarchical clustering technique which considers intuitionistic fuzzy sets to deal with the uncertainty present in the data. Instead of using traditional hamming distance or Euclidean distance measure to find the distance between the data points, it employs the probabilistic Euclidean distance measure to propose a novel clustering approach which we term as ‘Probabilistic Intuitionistic Fuzzy Hierarchical Clustering (PIFHC) Algorithm’. The proposed PIFHC algorithm considers probabilistic weights from the data to measure the distances between the data points. Clustering results over UCI datasets show that our proposed PIFHC algorithm gives better cluster accuracies than its existing counterparts. PIFHC efficiently provides improvements of 1%–3.5% in the clustering accuracy compared to other fuzzy hierarchical clustering algorithms for most of the datasets. We further provide experimental results with the real-world car dataset and the Listeria monocytogenes dataset for mouse susceptibility to demonstrate the practical efficacy of the proposed algorithm. For Listeria datasets as well, proposed PIFHC records 1.7% improvement against the state-of-the-art methods The dendrograms formed by the proposed PIFHC algorithm exhibits high cophenetic correlation coefficient with an improvement of 0.75% over others. We provide various AGNES methods to update the distance between merged clusters in the proposed PIFHC algorithm. •This paper presents a novel hierarchical clustering approach based on intutionistic fuzzy sets.•The proposed approach is termed as ‘probabilistic intuitionistic fuzzy hierarchical clustering (PIFHC)” algorithm.•PIFHC employs probabilistic Euclidean distance measure with different probabilistic weights for its different components.•Also presents methods to compute the distances of the merged cluster from other clusters.•Conducts extensive experiments over a number of benchmark and real-world datasets to demonstrate PIFHC’s superiority over others.
AbstractList Hierarchical clustering techniques help in building a tree-like structure called dendrogram from the data points which can be used to find the closest related data objects. This paper presents a novel hierarchical clustering technique which considers intuitionistic fuzzy sets to deal with the uncertainty present in the data. Instead of using traditional hamming distance or Euclidean distance measure to find the distance between the data points, it employs the probabilistic Euclidean distance measure to propose a novel clustering approach which we term as ‘Probabilistic Intuitionistic Fuzzy Hierarchical Clustering (PIFHC) Algorithm’. The proposed PIFHC algorithm considers probabilistic weights from the data to measure the distances between the data points. Clustering results over UCI datasets show that our proposed PIFHC algorithm gives better cluster accuracies than its existing counterparts. PIFHC efficiently provides improvements of 1%–3.5% in the clustering accuracy compared to other fuzzy hierarchical clustering algorithms for most of the datasets. We further provide experimental results with the real-world car dataset and the Listeria monocytogenes dataset for mouse susceptibility to demonstrate the practical efficacy of the proposed algorithm. For Listeria datasets as well, proposed PIFHC records 1.7% improvement against the state-of-the-art methods The dendrograms formed by the proposed PIFHC algorithm exhibits high cophenetic correlation coefficient with an improvement of 0.75% over others. We provide various AGNES methods to update the distance between merged clusters in the proposed PIFHC algorithm.
Hierarchical clustering techniques help in building a tree-like structure called dendrogram from the data points which can be used to find the closest related data objects. This paper presents a novel hierarchical clustering technique which considers intuitionistic fuzzy sets to deal with the uncertainty present in the data. Instead of using traditional hamming distance or Euclidean distance measure to find the distance between the data points, it employs the probabilistic Euclidean distance measure to propose a novel clustering approach which we term as ‘Probabilistic Intuitionistic Fuzzy Hierarchical Clustering (PIFHC) Algorithm’. The proposed PIFHC algorithm considers probabilistic weights from the data to measure the distances between the data points. Clustering results over UCI datasets show that our proposed PIFHC algorithm gives better cluster accuracies than its existing counterparts. PIFHC efficiently provides improvements of 1%–3.5% in the clustering accuracy compared to other fuzzy hierarchical clustering algorithms for most of the datasets. We further provide experimental results with the real-world car dataset and the Listeria monocytogenes dataset for mouse susceptibility to demonstrate the practical efficacy of the proposed algorithm. For Listeria datasets as well, proposed PIFHC records 1.7% improvement against the state-of-the-art methods The dendrograms formed by the proposed PIFHC algorithm exhibits high cophenetic correlation coefficient with an improvement of 0.75% over others. We provide various AGNES methods to update the distance between merged clusters in the proposed PIFHC algorithm. •This paper presents a novel hierarchical clustering approach based on intutionistic fuzzy sets.•The proposed approach is termed as ‘probabilistic intuitionistic fuzzy hierarchical clustering (PIFHC)” algorithm.•PIFHC employs probabilistic Euclidean distance measure with different probabilistic weights for its different components.•Also presents methods to compute the distances of the merged cluster from other clusters.•Conducts extensive experiments over a number of benchmark and real-world datasets to demonstrate PIFHC’s superiority over others.
ArticleNumber 108584
Author Muhuri, Pranab K.
Danish Lohani, Q.M.
Varshney, Ayush K.
Author_xml – sequence: 1
  givenname: Ayush K.
  surname: Varshney
  fullname: Varshney, Ayush K.
– sequence: 2
  givenname: Pranab K.
  orcidid: 0000-0001-7122-7622
  surname: Muhuri
  fullname: Muhuri, Pranab K.
  email: pranabmuhuri@cs.sau.ac.in
– sequence: 3
  givenname: Q.M.
  surname: Danish Lohani
  fullname: Danish Lohani, Q.M.
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-196036$$DView record from Swedish Publication Index (Umeå universitet)
BookMark eNp9kEFPwjAUxxuDiYB-AU_7AsO227rOeCEoQkICB_TadF0Hj4yVtJ1GP70lMx48kHd4r83_9_LyG6FBa1qN0D3BE4IJezhMpDNqQjGl4YNnPL1CQ8JzGheMk0GYM8bjtEjZDRo5d8ABKigfovVmOV_MHqPtXkcba0pZQgPOg4qWre_Ag2n757z7_v6KFqCttGoPSjbRrOmc1xbaXTRtdsaC3x9v0XUtG6fvfvsYvc1ftrNFvFq_LmfTVayShPuY6pSHKigt67ysK4KlxnVGc455LqWsygzXrFIqoTnJcpaHa3Wtq4qFNC7SZIzifq_71KeuFCcLR2m_hJEgnuF9Kozdie7YCVIwnLCQp31eWeOc1fUfQbA4KxQHcVYozgpFrzBA_B-kwMuzE28lNJfRpx7VQcJHsCacAt0qXYHVyovKwCX8B42Rj6o
CitedBy_id crossref_primary_10_1177_14727978251355805
crossref_primary_10_1016_j_isci_2024_109892
crossref_primary_10_1007_s00357_025_09506_5
crossref_primary_10_1007_s10462_024_10751_0
crossref_primary_10_1007_s10462_022_10366_3
crossref_primary_10_1016_j_inffus_2023_102137
crossref_primary_10_3390_su16114840
crossref_primary_10_1155_2024_6696775
crossref_primary_10_1007_s10462_022_10236_y
crossref_primary_10_1016_j_asoc_2023_110692
crossref_primary_10_3390_app122211342
crossref_primary_10_1007_s10462_023_10461_z
crossref_primary_10_1109_ACCESS_2024_3486370
crossref_primary_10_1109_TFUZZ_2024_3456091
crossref_primary_10_3233_JIFS_235488
crossref_primary_10_3390_buildings12122109
crossref_primary_10_4018_IJISMD_373639
crossref_primary_10_1016_j_asoc_2022_109699
crossref_primary_10_1016_j_jobe_2023_106997
crossref_primary_10_1109_ACCESS_2024_3512416
crossref_primary_10_1007_s10489_024_05297_1
Cites_doi 10.1080/03081077908547452
10.1007/BF02289588
10.1109/91.995115
10.1016/j.knosys.2015.07.017
10.1016/S0165-0114(98)00244-9
10.1109/TFUZZ.2018.2848245
10.1002/int.21915
10.1080/00207721.2013.797037
10.1613/jair.279
10.1038/85812
10.1016/j.ins.2008.06.008
10.1016/j.eswa.2010.09.100
10.3969/j.issn.1004-4132.2010.04.009
10.1016/j.engappai.2017.02.005
10.1021/pr060343h
10.1177/002224298104500303
10.1016/S0165-0114(03)00072-1
10.1016/j.asoc.2020.106102
10.1109/TFUZZ.2004.840134
10.1016/0098-3004(84)90020-7
10.1016/S0165-0114(86)80034-3
10.1016/j.engappai.2018.09.002
10.2307/1217208
10.1016/j.knosys.2012.08.019
10.1007/BF02294089
10.1109/91.811242
10.1016/j.jvolgeores.2016.04.014
10.1109/TFUZZ.2011.2164256
10.1016/S0019-9958(65)90241-X
10.1002/int.21807
10.1007/978-3-7908-1870-3_2
10.1007/s11766-014-3091-8
10.1007/s11042-018-5954-0
10.1016/j.eswa.2010.07.076
10.1016/S0019-9958(80)90156-4
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
ADTPV
AOWAS
D93
DOI 10.1016/j.asoc.2022.108584
DatabaseName CrossRef
SwePub
SwePub Articles
SWEPUB Umeå universitet
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID oai_DiVA_org_umu_196036
10_1016_j_asoc_2022_108584
S1568494622000977
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ADTPV
AOWAS
D93
ID FETCH-LOGICAL-c338t-2e48484922bf7bfd10ae0f5278087aaadb50f6dcc32715767692efedd67bf0943
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000821070000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
1872-9681
IngestDate Tue Nov 04 16:55:20 EST 2025
Tue Nov 18 21:26:37 EST 2025
Sat Nov 29 07:05:26 EST 2025
Fri Feb 23 02:41:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Intuitionistic fuzzy sets
Probabilistic Euclidean distance measure
Fuzzy clustering
Hierarchical clustering
Probabilistic intuitionistic fuzzy hierarchical clustering algorithm
Probabilistic weights
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-2e48484922bf7bfd10ae0f5278087aaadb50f6dcc32715767692efedd67bf0943
ORCID 0000-0001-7122-7622
ParticipantIDs swepub_primary_oai_DiVA_org_umu_196036
crossref_primary_10_1016_j_asoc_2022_108584
crossref_citationtrail_10_1016_j_asoc_2022_108584
elsevier_sciencedirect_doi_10_1016_j_asoc_2022_108584
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bang, Lee (b9) 2011; 38
Miin-Shen, Hwang, Chen (b30) 2004; 141
Benjamin, Banfer, Nelles, Sodja, Teslic, Skrjanc (b33) 2011; 19
Szmidt, Kacprzyk (b42) 2000; 114
Mirkin (b2) 2013
Unglert, Radić, Jellinek (b8) 2016; 320
Atanassov (b16) 1986; 20
Xiaolu (b31) 2018; 33
Gómez, Yáñez, Guada, Rodríguez, Montero, Zarrazola (b10) 2015; 87
K.W. Broman, V.L. Boyartchuk, W.F. Dietrich, Mapping Time-To-Death Quantitative Trait Loci in a Mouse Cross with High Survival Rates, Technical Report MS00-04, Department of Biostatistics, Johns Hopkins University.
Srivastava, Leone, Shocker (b4) 1981; 45
Höppner, Klawonn, Kruse, Runkler (b3) 1999
Xu, Chen, Wu (b46) 2008; 178
Bezdek, Ehrlich, Full (b15) 1984; 10
Amir (b25) 1999; 7
Aliahmadipour, Eslami (b22) 2016; 31
Johnson (b5) 1967; 32
Meunier, Dumas, Piec, Bechet, Hebraud, Hocquette (b12) 2007; 6
Sukanya, Biruntha (b11) 2012
Zeshui (b21) 2009; 20
Ruiz, Isaza, Agudelo, Agudelo (b40) 2017; 60
Torra (b35) 2010; 25
Torra (b28) 2005
Xiaolu, Xu (b34) 2015; 46
Shukla, Muhuri (b51) 2019; 77
Inti, Pastore, Abras, Brun, Ballarin (b48) 2017; 109
Zadeh (b14) 1965; 8
Pan, Shang, Shen (b37) 2015; 28
Boyartchuk, Broman, Mosher, D’Orazio, Starnbach, Dietrich (b44) 2001; 27
Mohammad, Yazdi, Monsefi (b29) 2010; 2
Na, Xu, Xia (b36) 2014; 29
Horng, Chen, Chang, Lee (b7) 2005; 13
Valderrama, Valderrama (b39) 2020; 89
D. Dubois, H. Prade, On distances between fuzzy points and their use for plausible reasoning, in: International Conference on Systems, Man and Cybernetics, 1983, pp. 300–303.
Xu, Wu (b17) 2010; 21
Atanassov T. Krassimir, Interval valued intuitionistic fuzzy sets, in: Intuitionistic Fuzzy Sets, in: Physica, Heidelberg, 1999, pp. 139–177.
Varshney, Danish Lohani, Muhuri (b20) 2020
Gang, Wang, Feng (b38) 2013; 37
Robert, James Rohlf (b47) 1962; 11
Mendel, John (b50) 2002; 10
Bezdek (b1) 2013
Yager (b23) 1979; 5
Yager (b24) 1980; 44
D’Andrade (b6) 1978; 43
Asuncion, Newman (b43) 2007
Danish, Solanki, Pranab (b19) 2018; 26
Kaufman, Rousseeuw (b13) 2009
Kumar, Verma, Mehra, Agrawal (b18) 2019; 78
Ronald (b32) 2013; 22
Ross (b27) 1996; 4
Shih-Cheng, Yang, Lin (b26) 2011; 38
Höppner (10.1016/j.asoc.2022.108584_b3) 1999
Johnson (10.1016/j.asoc.2022.108584_b5) 1967; 32
10.1016/j.asoc.2022.108584_b41
Yager (10.1016/j.asoc.2022.108584_b23) 1979; 5
Mirkin (10.1016/j.asoc.2022.108584_b2) 2013
10.1016/j.asoc.2022.108584_b45
Unglert (10.1016/j.asoc.2022.108584_b8) 2016; 320
Shukla (10.1016/j.asoc.2022.108584_b51) 2019; 77
Kumar (10.1016/j.asoc.2022.108584_b18) 2019; 78
10.1016/j.asoc.2022.108584_b49
Gómez (10.1016/j.asoc.2022.108584_b10) 2015; 87
Mohammad (10.1016/j.asoc.2022.108584_b29) 2010; 2
Amir (10.1016/j.asoc.2022.108584_b25) 1999; 7
Miin-Shen (10.1016/j.asoc.2022.108584_b30) 2004; 141
Xu (10.1016/j.asoc.2022.108584_b46) 2008; 178
Ruiz (10.1016/j.asoc.2022.108584_b40) 2017; 60
Atanassov (10.1016/j.asoc.2022.108584_b16) 1986; 20
Zadeh (10.1016/j.asoc.2022.108584_b14) 1965; 8
Sukanya (10.1016/j.asoc.2022.108584_b11) 2012
Varshney (10.1016/j.asoc.2022.108584_b20) 2020
Srivastava (10.1016/j.asoc.2022.108584_b4) 1981; 45
Danish (10.1016/j.asoc.2022.108584_b19) 2018; 26
Pan (10.1016/j.asoc.2022.108584_b37) 2015; 28
Ross (10.1016/j.asoc.2022.108584_b27) 1996; 4
Inti (10.1016/j.asoc.2022.108584_b48) 2017; 109
Bang (10.1016/j.asoc.2022.108584_b9) 2011; 38
Kaufman (10.1016/j.asoc.2022.108584_b13) 2009
Na (10.1016/j.asoc.2022.108584_b36) 2014; 29
Benjamin (10.1016/j.asoc.2022.108584_b33) 2011; 19
Szmidt (10.1016/j.asoc.2022.108584_b42) 2000; 114
Torra (10.1016/j.asoc.2022.108584_b28) 2005
Meunier (10.1016/j.asoc.2022.108584_b12) 2007; 6
Zeshui (10.1016/j.asoc.2022.108584_b21) 2009; 20
Yager (10.1016/j.asoc.2022.108584_b24) 1980; 44
Robert (10.1016/j.asoc.2022.108584_b47) 1962; 11
D’Andrade (10.1016/j.asoc.2022.108584_b6) 1978; 43
Bezdek (10.1016/j.asoc.2022.108584_b15) 1984; 10
Xu (10.1016/j.asoc.2022.108584_b17) 2010; 21
Asuncion (10.1016/j.asoc.2022.108584_b43) 2007
Shih-Cheng (10.1016/j.asoc.2022.108584_b26) 2011; 38
Xiaolu (10.1016/j.asoc.2022.108584_b31) 2018; 33
Gang (10.1016/j.asoc.2022.108584_b38) 2013; 37
Torra (10.1016/j.asoc.2022.108584_b35) 2010; 25
Horng (10.1016/j.asoc.2022.108584_b7) 2005; 13
Ronald (10.1016/j.asoc.2022.108584_b32) 2013; 22
Bezdek (10.1016/j.asoc.2022.108584_b1) 2013
Mendel (10.1016/j.asoc.2022.108584_b50) 2002; 10
Valderrama (10.1016/j.asoc.2022.108584_b39) 2020; 89
Boyartchuk (10.1016/j.asoc.2022.108584_b44) 2001; 27
Aliahmadipour (10.1016/j.asoc.2022.108584_b22) 2016; 31
Xiaolu (10.1016/j.asoc.2022.108584_b34) 2015; 46
References_xml – volume: 7
  start-page: 723
  year: 1999
  end-page: 733
  ident: b25
  article-title: Hierarchical unsupervised fuzzy clustering
  publication-title: IEEE Trans. Fuzzy Syst.
– year: 2007
  ident: b43
  article-title: UCI machine learning repository
– volume: 29
  start-page: 1
  year: 2014
  end-page: 17
  ident: b36
  article-title: Hierarchical hesitant fuzzy K-means clustering algorithm
  publication-title: Appl. Math. A J. Chinese Univ.
– reference: D. Dubois, H. Prade, On distances between fuzzy points and their use for plausible reasoning, in: International Conference on Systems, Man and Cybernetics, 1983, pp. 300–303.
– volume: 11
  start-page: 33
  year: 1962
  end-page: 40
  ident: b47
  article-title: The comparison of dendrograms by objective methods
  publication-title: Taxon
– volume: 38
  start-page: 933
  year: 2011
  end-page: 940
  ident: b26
  article-title: Hierarchical fuzzy clustering decision tree for classifying recipes of ion implanter
  publication-title: Expert Syst. Appl.
– volume: 43
  start-page: 59
  year: 1978
  end-page: 67
  ident: b6
  article-title: U-statistic hierarchical clustering
  publication-title: Psychometrika
– volume: 22
  start-page: 958
  year: 2013
  end-page: 965
  ident: b32
  article-title: Pythagorean membership grades in multicriteria decision making
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 25
  start-page: 529
  year: 2010
  end-page: 539
  ident: b35
  article-title: Hesitant fuzzy sets
  publication-title: Int. J. Intell. Syst.
– volume: 109
  start-page: 438
  year: 2017
  end-page: 445
  ident: b48
  article-title: Analysis of genetic association using hierarchical clustering and cluster validation indices
  publication-title: Genomics
– volume: 320
  start-page: 58
  year: 2016
  end-page: 74
  ident: b8
  article-title: Principal component analysis vs. self-organizing maps combined with hierarchical clustering for pattern recognition in volcano seismic spectra
  publication-title: J. Volcanol. Geotherm. Res.
– start-page: 269
  year: 2012
  end-page: 271
  ident: b11
  article-title: Techniques on text mining
  publication-title: 2012 IEEE International Conference on Advanced Communication Control and Computing Technologies
– reference: Atanassov T. Krassimir, Interval valued intuitionistic fuzzy sets, in: Intuitionistic Fuzzy Sets, in: Physica, Heidelberg, 1999, pp. 139–177.
– volume: 20
  start-page: 87
  year: 1986
  end-page: 96
  ident: b16
  article-title: Intuitionistic fuzzy sets
  publication-title: Fuzzy Sets and Systems
– volume: 6
  start-page: 358
  year: 2007
  end-page: 366
  ident: b12
  article-title: Assessment of hierarchical clustering methodologies for proteomic data mining
  publication-title: J. Proteome Res.
– volume: 28
  start-page: 2409
  year: 2015
  end-page: 2421
  ident: b37
  article-title: A hierarchical fuzzy cluster ensemble approach and its application to big data clustering
  publication-title: J. Intell. Fuzzy Systems
– volume: 78
  start-page: 12663
  year: 2019
  end-page: 12687
  ident: b18
  article-title: A modified intuitionistic fuzzy c-means clustering approach to segment human brain MRI image
  publication-title: Multimedia Tools Appl.
– volume: 32
  start-page: 241
  year: 1967
  end-page: 254
  ident: b5
  article-title: Hierarchical clustering schemes
  publication-title: Psychometrika
– volume: 21
  start-page: 580
  year: 2010
  end-page: 590
  ident: b17
  article-title: Intuitionistic fuzzy c-means clustering algorithms
  publication-title: J. Syst. Eng. Electron.
– volume: 4
  start-page: 77
  year: 1996
  end-page: 90
  ident: b27
  article-title: Improved use of continuous attributes in C4. 5
  publication-title: J. Artif. Intell. Res.
– volume: 77
  start-page: 268
  year: 2019
  end-page: 282
  ident: b51
  article-title: Big-data clustering with interval type-2 fuzzy uncertainty modeling in gene expression datasets
  publication-title: Eng. Appl. Artif. Intell.
– start-page: 1
  year: 2020
  end-page: 6
  ident: b20
  article-title: Improved probabilistic intuitionistic fuzzy c-means clustering algorithm: Improved PIFCM
  publication-title: 2020 IEEE International Conference on Fuzzy Systems
– volume: 27
  start-page: 259
  year: 2001
  end-page: 260
  ident: b44
  article-title: Multigenetic control of listeria monocytogenes susceptibility in mice
  publication-title: Nat. Genet.
– volume: 60
  start-page: 117
  year: 2017
  end-page: 127
  ident: b40
  article-title: A new criterion to validate and improve the classification process of LAMDA algorithm applied to diesel engines
  publication-title: Eng. Appl. Artif. Intell.
– volume: 46
  start-page: 562
  year: 2015
  end-page: 576
  ident: b34
  article-title: Hesitant fuzzy agglomerative hierarchical clustering algorithms
  publication-title: Internat. J. Systems Sci.
– volume: 20
  start-page: 90
  year: 2009
  end-page: 97
  ident: b21
  article-title: Intuitionistic fuzzy hierarchical clustering algorithms
  publication-title: J. Syst. Eng. Electron.
– volume: 141
  start-page: 301
  year: 2004
  end-page: 317
  ident: b30
  article-title: Fuzzy clustering algorithms for mixed feature variables
  publication-title: Fuzzy Sets and Systems
– volume: 33
  start-page: 1798
  year: 2018
  end-page: 1822
  ident: b31
  article-title: Pythagorean fuzzy clustering analysis: a hierarchical clustering algorithm with the ratio index-based ranking methods
  publication-title: Int. J. Intell. Syst.
– volume: 38
  start-page: 4312
  year: 2011
  end-page: 4325
  ident: b9
  article-title: Fuzzy time series prediction using hierarchical clustering algorithms
  publication-title: Expert Syst. Appl.
– volume: 31
  start-page: 855
  year: 2016
  end-page: 871
  ident: b22
  article-title: GHFHC: generalized hesitant fuzzy hierarchical clustering algorithm
  publication-title: Int. J. Intell. Syst.
– volume: 114
  start-page: 505
  year: 2000
  end-page: 518
  ident: b42
  article-title: Distances between intuitionistic fuzzy sets
  publication-title: Fuzzy Sets and Systems
– volume: 10
  start-page: 117
  year: 2002
  end-page: 127
  ident: b50
  article-title: Type-2 fuzzy sets made simple
  publication-title: IEEE Trans. Fuzzy Syst.
– year: 2013
  ident: b2
  article-title: Mathematical Classification and Clustering, Vol. 11
– volume: 5
  start-page: 221
  year: 1979
  end-page: 229
  ident: b23
  article-title: On the measure of fuzziness and negation. Part I: Membership in the unit interval
  publication-title: Int. J. Gen. Syst.
– volume: 19
  start-page: 1163
  year: 2011
  end-page: 1176
  ident: b33
  article-title: Supervised hierarchical clustering in fuzzy model identification
  publication-title: IEEE Trans. Fuzzy Syst.
– start-page: 646
  year: 2005
  end-page: 651
  ident: b28
  article-title: Fuzzy c-means for fuzzy hierarchical clustering
  publication-title: The 14th IEEE International Conference on Fuzzy Systems, 2005
– volume: 13
  start-page: 216
  year: 2005
  end-page: 228
  ident: b7
  article-title: A new method for fuzzy information retrieval based on fuzzy hierarchical clustering and fuzzy inference techniques
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 89
  year: 2020
  ident: b39
  article-title: Two cluster validity indices for the LAMDA clustering method
  publication-title: Appl. Soft Comput.
– year: 1999
  ident: b3
  article-title: Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Image Recognition
– volume: 87
  start-page: 26
  year: 2015
  end-page: 37
  ident: b10
  article-title: Fuzzy image segmentation based upon hierarchical clustering
  publication-title: Knowl.-Based Syst.
– volume: 10
  start-page: 191
  year: 1984
  end-page: 203
  ident: b15
  article-title: FCM: The fuzzy c-means clustering algorithm
  publication-title: Comput. Geosci.
– volume: 2
  start-page: 1793
  year: 2010
  end-page: 8163
  ident: b29
  article-title: A new hierarchical clustering algorithm on fuzzy data (FHCA)
  publication-title: Int. J. Comput. Electr. Eng.
– volume: 45
  start-page: 38
  year: 1981
  end-page: 48
  ident: b4
  article-title: Market structure analysis: hierarchical clustering of products based on substitution-in-use
  publication-title: J. Mark.
– year: 2009
  ident: b13
  article-title: Finding Groups in Data: An Introduction to Cluster Analysis, Vol. 344
– volume: 44
  start-page: 236
  year: 1980
  end-page: 260
  ident: b24
  article-title: On the measure of fuzziness and negation. II. lattices
  publication-title: Inf. Control
– volume: 178
  start-page: 3775
  year: 2008
  end-page: 3790
  ident: b46
  article-title: Clustering algorithm for intuitionistic fuzzy sets
  publication-title: Inform. Sci.
– volume: 37
  start-page: 357
  year: 2013
  end-page: 365
  ident: b38
  article-title: Generalized hesitant fuzzy sets and their application in decision support system
  publication-title: Knowl.-Based Syst.
– reference: K.W. Broman, V.L. Boyartchuk, W.F. Dietrich, Mapping Time-To-Death Quantitative Trait Loci in a Mouse Cross with High Survival Rates, Technical Report MS00-04, Department of Biostatistics, Johns Hopkins University.
– volume: 8
  start-page: 338
  year: 1965
  end-page: 353
  ident: b14
  article-title: Fuzzy sets
  publication-title: Inf. Control
– volume: 26
  start-page: 3715
  year: 2018
  end-page: 3729
  ident: b19
  article-title: Novel adaptive clustering algorithms based on a probabilistic similarity measure over atanassov intuitionistic fuzzy set
  publication-title: IEEE Trans. Fuzzy Syst.
– year: 2013
  ident: b1
  article-title: Pattern Recognition with Fuzzy Objective Function Algorithms
– volume: 5
  start-page: 221
  year: 1979
  ident: 10.1016/j.asoc.2022.108584_b23
  article-title: On the measure of fuzziness and negation. Part I: Membership in the unit interval
  publication-title: Int. J. Gen. Syst.
  doi: 10.1080/03081077908547452
– volume: 32
  start-page: 241
  issue: 3
  year: 1967
  ident: 10.1016/j.asoc.2022.108584_b5
  article-title: Hierarchical clustering schemes
  publication-title: Psychometrika
  doi: 10.1007/BF02289588
– volume: 10
  start-page: 117
  issue: 2
  year: 2002
  ident: 10.1016/j.asoc.2022.108584_b50
  article-title: Type-2 fuzzy sets made simple
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/91.995115
– volume: 87
  start-page: 26
  year: 2015
  ident: 10.1016/j.asoc.2022.108584_b10
  article-title: Fuzzy image segmentation based upon hierarchical clustering
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.07.017
– volume: 114
  start-page: 505
  issue: 3
  year: 2000
  ident: 10.1016/j.asoc.2022.108584_b42
  article-title: Distances between intuitionistic fuzzy sets
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/S0165-0114(98)00244-9
– ident: 10.1016/j.asoc.2022.108584_b45
– volume: 26
  start-page: 3715
  issue: 6
  year: 2018
  ident: 10.1016/j.asoc.2022.108584_b19
  article-title: Novel adaptive clustering algorithms based on a probabilistic similarity measure over atanassov intuitionistic fuzzy set
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2018.2848245
– volume: 33
  start-page: 1798
  issue: 9
  year: 2018
  ident: 10.1016/j.asoc.2022.108584_b31
  article-title: Pythagorean fuzzy clustering analysis: a hierarchical clustering algorithm with the ratio index-based ranking methods
  publication-title: Int. J. Intell. Syst.
  doi: 10.1002/int.21915
– ident: 10.1016/j.asoc.2022.108584_b41
– volume: 46
  start-page: 562
  issue: 3
  year: 2015
  ident: 10.1016/j.asoc.2022.108584_b34
  article-title: Hesitant fuzzy agglomerative hierarchical clustering algorithms
  publication-title: Internat. J. Systems Sci.
  doi: 10.1080/00207721.2013.797037
– volume: 4
  start-page: 77
  year: 1996
  ident: 10.1016/j.asoc.2022.108584_b27
  article-title: Improved use of continuous attributes in C4. 5
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.279
– volume: 2
  start-page: 1793
  issue: 1
  year: 2010
  ident: 10.1016/j.asoc.2022.108584_b29
  article-title: A new hierarchical clustering algorithm on fuzzy data (FHCA)
  publication-title: Int. J. Comput. Electr. Eng.
– volume: 27
  start-page: 259
  year: 2001
  ident: 10.1016/j.asoc.2022.108584_b44
  article-title: Multigenetic control of listeria monocytogenes susceptibility in mice
  publication-title: Nat. Genet.
  doi: 10.1038/85812
– volume: 22
  start-page: 958
  issue: 4
  year: 2013
  ident: 10.1016/j.asoc.2022.108584_b32
  article-title: Pythagorean membership grades in multicriteria decision making
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 178
  start-page: 3775
  issue: 19
  year: 2008
  ident: 10.1016/j.asoc.2022.108584_b46
  article-title: Clustering algorithm for intuitionistic fuzzy sets
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2008.06.008
– year: 1999
  ident: 10.1016/j.asoc.2022.108584_b3
– volume: 38
  start-page: 4312
  issue: 4
  year: 2011
  ident: 10.1016/j.asoc.2022.108584_b9
  article-title: Fuzzy time series prediction using hierarchical clustering algorithms
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.09.100
– volume: 28
  start-page: 2409
  issue: 6
  year: 2015
  ident: 10.1016/j.asoc.2022.108584_b37
  article-title: A hierarchical fuzzy cluster ensemble approach and its application to big data clustering
  publication-title: J. Intell. Fuzzy Systems
– volume: 21
  start-page: 580
  issue: 4
  year: 2010
  ident: 10.1016/j.asoc.2022.108584_b17
  article-title: Intuitionistic fuzzy c-means clustering algorithms
  publication-title: J. Syst. Eng. Electron.
  doi: 10.3969/j.issn.1004-4132.2010.04.009
– volume: 60
  start-page: 117
  year: 2017
  ident: 10.1016/j.asoc.2022.108584_b40
  article-title: A new criterion to validate and improve the classification process of LAMDA algorithm applied to diesel engines
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2017.02.005
– volume: 109
  start-page: 438
  issue: 5–6
  year: 2017
  ident: 10.1016/j.asoc.2022.108584_b48
  article-title: Analysis of genetic association using hierarchical clustering and cluster validation indices
  publication-title: Genomics
– volume: 6
  start-page: 358
  issue: 1
  year: 2007
  ident: 10.1016/j.asoc.2022.108584_b12
  article-title: Assessment of hierarchical clustering methodologies for proteomic data mining
  publication-title: J. Proteome Res.
  doi: 10.1021/pr060343h
– volume: 45
  start-page: 38
  issue: 3
  year: 1981
  ident: 10.1016/j.asoc.2022.108584_b4
  article-title: Market structure analysis: hierarchical clustering of products based on substitution-in-use
  publication-title: J. Mark.
  doi: 10.1177/002224298104500303
– volume: 141
  start-page: 301
  issue: 2
  year: 2004
  ident: 10.1016/j.asoc.2022.108584_b30
  article-title: Fuzzy clustering algorithms for mixed feature variables
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/S0165-0114(03)00072-1
– volume: 89
  year: 2020
  ident: 10.1016/j.asoc.2022.108584_b39
  article-title: Two cluster validity indices for the LAMDA clustering method
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106102
– volume: 13
  start-page: 216
  issue: 2
  year: 2005
  ident: 10.1016/j.asoc.2022.108584_b7
  article-title: A new method for fuzzy information retrieval based on fuzzy hierarchical clustering and fuzzy inference techniques
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2004.840134
– volume: 10
  start-page: 191
  issue: 2–3
  year: 1984
  ident: 10.1016/j.asoc.2022.108584_b15
  article-title: FCM: The fuzzy c-means clustering algorithm
  publication-title: Comput. Geosci.
  doi: 10.1016/0098-3004(84)90020-7
– volume: 20
  start-page: 87
  issue: 1
  year: 1986
  ident: 10.1016/j.asoc.2022.108584_b16
  article-title: Intuitionistic fuzzy sets
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/S0165-0114(86)80034-3
– volume: 20
  start-page: 90
  issue: 1
  year: 2009
  ident: 10.1016/j.asoc.2022.108584_b21
  article-title: Intuitionistic fuzzy hierarchical clustering algorithms
  publication-title: J. Syst. Eng. Electron.
– volume: 77
  start-page: 268
  year: 2019
  ident: 10.1016/j.asoc.2022.108584_b51
  article-title: Big-data clustering with interval type-2 fuzzy uncertainty modeling in gene expression datasets
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2018.09.002
– year: 2007
  ident: 10.1016/j.asoc.2022.108584_b43
– volume: 11
  start-page: 33
  issue: 2
  year: 1962
  ident: 10.1016/j.asoc.2022.108584_b47
  article-title: The comparison of dendrograms by objective methods
  publication-title: Taxon
  doi: 10.2307/1217208
– start-page: 269
  year: 2012
  ident: 10.1016/j.asoc.2022.108584_b11
  article-title: Techniques on text mining
– volume: 37
  start-page: 357
  year: 2013
  ident: 10.1016/j.asoc.2022.108584_b38
  article-title: Generalized hesitant fuzzy sets and their application in decision support system
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2012.08.019
– year: 2009
  ident: 10.1016/j.asoc.2022.108584_b13
– year: 2013
  ident: 10.1016/j.asoc.2022.108584_b1
– volume: 43
  start-page: 59
  issue: 1
  year: 1978
  ident: 10.1016/j.asoc.2022.108584_b6
  article-title: U-statistic hierarchical clustering
  publication-title: Psychometrika
  doi: 10.1007/BF02294089
– volume: 7
  start-page: 723
  issue: 6
  year: 1999
  ident: 10.1016/j.asoc.2022.108584_b25
  article-title: Hierarchical unsupervised fuzzy clustering
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/91.811242
– volume: 320
  start-page: 58
  year: 2016
  ident: 10.1016/j.asoc.2022.108584_b8
  article-title: Principal component analysis vs. self-organizing maps combined with hierarchical clustering for pattern recognition in volcano seismic spectra
  publication-title: J. Volcanol. Geotherm. Res.
  doi: 10.1016/j.jvolgeores.2016.04.014
– volume: 19
  start-page: 1163
  issue: 6
  year: 2011
  ident: 10.1016/j.asoc.2022.108584_b33
  article-title: Supervised hierarchical clustering in fuzzy model identification
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2011.2164256
– volume: 8
  start-page: 338
  issue: 3
  year: 1965
  ident: 10.1016/j.asoc.2022.108584_b14
  article-title: Fuzzy sets
  publication-title: Inf. Control
  doi: 10.1016/S0019-9958(65)90241-X
– volume: 31
  start-page: 855
  issue: 9
  year: 2016
  ident: 10.1016/j.asoc.2022.108584_b22
  article-title: GHFHC: generalized hesitant fuzzy hierarchical clustering algorithm
  publication-title: Int. J. Intell. Syst.
  doi: 10.1002/int.21807
– volume: 25
  start-page: 529
  issue: 6
  year: 2010
  ident: 10.1016/j.asoc.2022.108584_b35
  article-title: Hesitant fuzzy sets
  publication-title: Int. J. Intell. Syst.
– year: 2013
  ident: 10.1016/j.asoc.2022.108584_b2
– start-page: 1
  year: 2020
  ident: 10.1016/j.asoc.2022.108584_b20
  article-title: Improved probabilistic intuitionistic fuzzy c-means clustering algorithm: Improved PIFCM
– ident: 10.1016/j.asoc.2022.108584_b49
  doi: 10.1007/978-3-7908-1870-3_2
– start-page: 646
  year: 2005
  ident: 10.1016/j.asoc.2022.108584_b28
  article-title: Fuzzy c-means for fuzzy hierarchical clustering
– volume: 29
  start-page: 1
  issue: 1
  year: 2014
  ident: 10.1016/j.asoc.2022.108584_b36
  article-title: Hierarchical hesitant fuzzy K-means clustering algorithm
  publication-title: Appl. Math. A J. Chinese Univ.
  doi: 10.1007/s11766-014-3091-8
– volume: 78
  start-page: 12663
  issue: 10
  year: 2019
  ident: 10.1016/j.asoc.2022.108584_b18
  article-title: A modified intuitionistic fuzzy c-means clustering approach to segment human brain MRI image
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-018-5954-0
– volume: 38
  start-page: 933
  issue: 1
  year: 2011
  ident: 10.1016/j.asoc.2022.108584_b26
  article-title: Hierarchical fuzzy clustering decision tree for classifying recipes of ion implanter
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.07.076
– volume: 44
  start-page: 236
  issue: 3
  year: 1980
  ident: 10.1016/j.asoc.2022.108584_b24
  article-title: On the measure of fuzziness and negation. II. lattices
  publication-title: Inf. Control
  doi: 10.1016/S0019-9958(80)90156-4
SSID ssj0016928
Score 2.4731178
Snippet Hierarchical clustering techniques help in building a tree-like structure called dendrogram from the data points which can be used to find the closest related...
SourceID swepub
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 108584
SubjectTerms Fuzzy clustering
Hierarchical clustering
Intuitionistic fuzzy sets
Probabilistic Euclidean distance measure
Probabilistic intuitionistic fuzzy hierarchical clustering algorithm
Probabilistic weights
Title PIFHC: The Probabilistic Intuitionistic Fuzzy Hierarchical Clustering Algorithm
URI https://dx.doi.org/10.1016/j.asoc.2022.108584
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-196036
Volume 120
WOSCitedRecordID wos000821070000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwELWAcuDCjiibekBcqkRNmsTOsWIRu4oEqDfLdhwKgrRqGgR_z3hJqNgEBxQpShw7yzxnPE5m5iG0245ChlMBCAihQ3KEw_0gdALuYSE4ITwQmmwCX16SXi_u2mSfuaYTwFlGXl7i4b9CDWUAtgqd_QPc1UmhALYBdFgD7LD-FfDdk6Pj_UmbszQ0c9C42oW8GJfjlWbaGuV96_LVeS3yfvPMfUehX5hI9C4MaYxPHFKh6VD3fNA3pFDNK_fCnfyEALPPymGv1HoRcYLYfgss1aIOUvusYs1s_8Fl0HtcdTblphganrcvUlcf3N926GB0R4ungsLrDiPmNKr5OIxBB9U6J4e90-qvTxRrLtzqdtQ2wb4TR8SzAU_GN-_jtb81Kiazv2qL4XoRzVtTv9ExEC2hKZkto4WSRqNhteoKqmnEVtHN0eH1_rFj2SkcAdP6sePLgMAS-z5PMU8Tr8VkKw19TFoEM8YSHrbSKBGi7WMPZnUYnk6mMkkiqK38OdfQTDbI5DpqJFzZbZzEqQwCJiLYZVJCmefhtpC8jrzy8aiwqdsVg8gjLX30HqgSCVUioUYkddSs2gxN4pIfa4el1Kg1vYxJRQH2H9vtGRFX1_gG843fVtxEc-9ddAvNjEeF3Eaz4nl8n492bI95A_2mVo8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PIFHC&rft.jtitle=Applied+soft+computing&rft.au=Varshney%2C+Ayush+K.&rft.au=Muhuri%2C+Pranab+K.&rft.au=Danish+Lohani%2C+Q.M.&rft.date=2022-05-01&rft.issn=1568-4946&rft.volume=120&rft_id=info:doi/10.1016%2Fj.asoc.2022.108584&rft.externalDocID=oai_DiVA_org_umu_196036
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon