Joint Network Reconstruction and Community Detection from Rich but Noisy Data
Most empirical studies of complex networks return rich but noisy data, as they measure the network structure repeatedly but with substantial errors due to indirect measurements. In this article, we propose a novel framework, called the group-based binary mixture (GBM) modeling approach, to simultane...
Gespeichert in:
| Veröffentlicht in: | Journal of computational and graphical statistics Jg. 33; H. 2; S. 501 - 514 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Alexandria
Taylor & Francis
02.04.2024
Taylor & Francis Ltd |
| Schlagworte: | |
| ISSN: | 1061-8600, 1537-2715 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Most empirical studies of complex networks return rich but noisy data, as they measure the network structure repeatedly but with substantial errors due to indirect measurements. In this article, we propose a novel framework, called the group-based binary mixture (GBM) modeling approach, to simultaneously conduct network reconstruction and community detection from such rich but noisy data. A generalized expectation-maximization (EM) algorithm is developed for computing the maximum likelihood estimates, and an information criterion is introduced to consistently select the number of communities. The strong consistency properties of the network reconstruction and community detection are established under some assumption on the Kullback-Leibler (KL) divergence, and in particular, we do not impose assumptions on the true network structure. It is shown that joint reconstruction with community detection has a synergistic effect, whereby actually detecting communities can improve the accuracy of the reconstruction. Finally, we illustrate the performance of the approach with numerical simulations and two real examples.
Supplementary materials
for this article are available online. |
|---|---|
| AbstractList | Most empirical studies of complex networks return rich but noisy data, as they measure the network structure repeatedly but with substantial errors due to indirect measurements. In this article, we propose a novel framework, called the group-based binary mixture (GBM) modeling approach, to simultaneously conduct network reconstruction and community detection from such rich but noisy data. A generalized expectation-maximization (EM) algorithm is developed for computing the maximum likelihood estimates, and an information criterion is introduced to consistently select the number of communities. The strong consistency properties of the network reconstruction and community detection are established under some assumption on the Kullback-Leibler (KL) divergence, and in particular, we do not impose assumptions on the true network structure. It is shown that joint reconstruction with community detection has a synergistic effect, whereby actually detecting communities can improve the accuracy of the reconstruction. Finally, we illustrate the performance of the approach with numerical simulations and two real examples.
Supplementary materials
for this article are available online. Most empirical studies of complex networks return rich but noisy data, as they measure the network structure repeatedly but with substantial errors due to indirect measurements. In this article, we propose a novel framework, called the group-based binary mixture (GBM) modeling approach, to simultaneously conduct network reconstruction and community detection from such rich but noisy data. A generalized expectation-maximization (EM) algorithm is developed for computing the maximum likelihood estimates, and an information criterion is introduced to consistently select the number of communities. The strong consistency properties of the network reconstruction and community detection are established under some assumption on the Kullback-Leibler (KL) divergence, and in particular, we do not impose assumptions on the true network structure. It is shown that joint reconstruction with community detection has a synergistic effect, whereby actually detecting communities can improve the accuracy of the reconstruction. Finally, we illustrate the performance of the approach with numerical simulations and two real examples. Supplementary materials for this article are available online. |
| Author | Chen, Xiao Chen, Yu Zhang, Weiping Hu, Jie |
| Author_xml | – sequence: 1 givenname: Jie surname: Hu fullname: Hu, Jie organization: International Institute of Finance, School of Management, University of Science and Technology of China – sequence: 2 givenname: Xiao surname: Chen fullname: Chen, Xiao organization: International Institute of Finance, School of Management, University of Science and Technology of China – sequence: 3 givenname: Yu surname: Chen fullname: Chen, Yu organization: International Institute of Finance, School of Management, University of Science and Technology of China – sequence: 4 givenname: Weiping surname: Zhang fullname: Zhang, Weiping organization: International Institute of Finance, School of Management, University of Science and Technology of China |
| BookMark | eNqFkF1PwyAUhomZidv0J5g08brzAC1t441mfmdqsug1YZRG5goTaMz-vTSdN17o1eHA-xzgmaCRsUYhdIphhqGEcwwMlwxgRoDQGSGsYBQO0BjntEhJgfNRXMdM2oeO0MT7NQBgVhVj9PRotQnJswpf1n0kSyWt8cF1MmhrEmHqZG7btjM67JJrFdSw3zjbJkst35NVF2GrfTwVQRyjw0ZsvDrZ1yl6u715nd-ni5e7h_nVIpWUliEldZXRRhSqKiStC0VYXhNZZjUrmxLXdAVlrmJLicqBAmQkk6wqMVGkyYQCOkVnw9yts5-d8oGvbedMvJJTYFkGWVHlMXUxpKSz3jvVcKmD6D8QnNAbjoH3_viPP97743t_kc5_0VunW-F2_3KXA6dNY10rotdNzYPYbaxrnDBSx0f-PeIbdmiHoA |
| CitedBy_id | crossref_primary_10_1111_anzs_70026 |
| Cites_doi | 10.1093/biomet/asaa099 10.1093/biomet/80.2.267 10.1093/biomet/asaa009 10.1214/20-AOS2042 10.1214/13-AOS1138 10.1111/rssb.12200 10.1103/PhysRevLett.108.258701 10.1080/01621459.2020.1777136 10.1214/14-AOS1274 10.1080/01621459.2021.1996378 10.1214/18-EJS1521 10.1103/PhysRevLett.123.128301 10.1111/cwe.12357 10.1073/pnas.0610537104 10.1198/jasa.2010.tm09414 10.1137/140956166 10.1214/10-AOAS403 10.1080/07350015.2022.2099870 10.1080/01621459.2020.1722676 10.1080/10618600.2015.1096790 10.2307/1912526 10.1007/s00779-005-0046-3 10.1016/s0022-2836(03)00239-0 10.1093/bioinformatics/btl396 10.1038/ncomms5323 10.1080/07350015.2016.1272459 10.1038/s41567-018-0076-1 10.1103/PhysRevLett.114.028701 10.1073/pnas.0908366106 10.1080/07350015.2020.1798241 |
| ContentType | Journal Article |
| Copyright | 2023 American Statistical Association and Institute of Mathematical Statistics 2023 2023 American Statistical Association and Institute of Mathematical Statistics |
| Copyright_xml | – notice: 2023 American Statistical Association and Institute of Mathematical Statistics 2023 – notice: 2023 American Statistical Association and Institute of Mathematical Statistics |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1080/10618600.2023.2267630 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Mathematics |
| EISSN | 1537-2715 |
| EndPage | 514 |
| ExternalDocumentID | 10_1080_10618600_2023_2267630 2267630 |
| Genre | Research Article |
| GrantInformation_xml | – fundername: Natural Science Foundation of China grantid: 12371279 and 12171450 – fundername: Natural Science Foundation of Anhui Province grantid: 2208085MA05 |
| GroupedDBID | -~X .4S .7F .DC .QJ 0BK 0R~ 30N 4.4 5GY AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABTAI ABXUL ABXYU ABYWD ACGFO ACGFS ACIWK ACMTB ACTIO ACTMH ADCVX ADGTB AEGXH AELLO AENEX AEOZL AEPSL AEYOC AFRVT AFVYC AGDLA AGMYJ AHDZW AIAGR AIJEM AKBRZ AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMVHM AQRUH AQTUD ARCSS AVBZW AWYRJ BLEHA CCCUG CS3 D0L DGEBU DKSSO DU5 EBS E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P JAA KYCEM LJTGL M4Z MS~ NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ RWL RXW S-T SNACF TAE TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TUS UT5 UU3 WZA XWC ZGOLN ~S~ AAYXX CITATION JQ2 |
| ID | FETCH-LOGICAL-c338t-2d943fa7e97c3d7e265d2c84d68f81d3b085e84d32e50300424c69812e2f4ae03 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001105498600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1061-8600 |
| IngestDate | Wed Aug 13 08:47:53 EDT 2025 Sat Nov 29 03:24:19 EST 2025 Tue Nov 18 21:39:54 EST 2025 Mon Oct 20 23:49:33 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c338t-2d943fa7e97c3d7e265d2c84d68f81d3b085e84d32e50300424c69812e2f4ae03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3064404795 |
| PQPubID | 29738 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_3064404795 crossref_primary_10_1080_10618600_2023_2267630 informaworld_taylorfrancis_310_1080_10618600_2023_2267630 crossref_citationtrail_10_1080_10618600_2023_2267630 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-02 |
| PublicationDateYYYYMMDD | 2024-04-02 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | Alexandria |
| PublicationPlace_xml | – name: Alexandria |
| PublicationTitle | Journal of computational and graphical statistics |
| PublicationYear | 2024 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | e_1_3_4_4_1 e_1_3_4_3_1 e_1_3_4_8_1 e_1_3_4_7_1 e_1_3_4_20_1 e_1_3_4_6_1 e_1_3_4_5_1 e_1_3_4_23_1 e_1_3_4_24_1 e_1_3_4_21_1 e_1_3_4_22_1 e_1_3_4_27_1 e_1_3_4_28_1 e_1_3_4_25_1 e_1_3_4_26_1 e_1_3_4_29_1 Airoldi E. M. (e_1_3_4_2_1) 2008; 9 e_1_3_4_31_1 e_1_3_4_30_1 Gao C. (e_1_3_4_9_1) 2017; 18 e_1_3_4_12_1 e_1_3_4_35_1 e_1_3_4_13_1 e_1_3_4_34_1 e_1_3_4_10_1 Keribin C. (e_1_3_4_15_1) 2000; 62 e_1_3_4_33_1 e_1_3_4_11_1 e_1_3_4_32_1 e_1_3_4_16_1 e_1_3_4_17_1 e_1_3_4_14_1 e_1_3_4_18_1 e_1_3_4_19_1 |
| References_xml | – ident: e_1_3_4_35_1 doi: 10.1093/biomet/asaa099 – ident: e_1_3_4_20_1 doi: 10.1093/biomet/80.2.267 – ident: e_1_3_4_17_1 doi: 10.1093/biomet/asaa009 – ident: e_1_3_4_34_1 doi: 10.1214/20-AOS2042 – ident: e_1_3_4_3_1 doi: 10.1214/13-AOS1138 – ident: e_1_3_4_19_1 doi: 10.1111/rssb.12200 – ident: e_1_3_4_24_1 doi: 10.1103/PhysRevLett.108.258701 – ident: e_1_3_4_28_1 doi: 10.1080/01621459.2020.1777136 – ident: e_1_3_4_18_1 doi: 10.1214/14-AOS1274 – volume: 62 start-page: 49 year: 2000 ident: e_1_3_4_15_1 article-title: “Consistent Estimation of the Order of Mixture Models,” publication-title: Sankhyā: The Indian Journal of Statistics, Series A – volume: 18 start-page: 1980 year: 2017 ident: e_1_3_4_9_1 article-title: “Achieving Optimal Misclassification Proportion in Stochastic Block Models,” publication-title: The Journal of Machine Learning Research – ident: e_1_3_4_30_1 doi: 10.1080/01621459.2021.1996378 – ident: e_1_3_4_16_1 doi: 10.1214/18-EJS1521 – ident: e_1_3_4_23_1 doi: 10.1103/PhysRevLett.123.128301 – ident: e_1_3_4_7_1 doi: 10.1111/cwe.12357 – ident: e_1_3_4_22_1 doi: 10.1073/pnas.0610537104 – volume: 9 start-page: 1981 year: 2008 ident: e_1_3_4_2_1 article-title: “Mixed Membership Stochastic Blockmodels,” publication-title: The Journal of Machine Learning Research – ident: e_1_3_4_10_1 doi: 10.1198/jasa.2010.tm09414 – ident: e_1_3_4_29_1 doi: 10.1137/140956166 – ident: e_1_3_4_32_1 doi: 10.1214/10-AOAS403 – ident: e_1_3_4_6_1 doi: 10.1080/07350015.2022.2099870 – ident: e_1_3_4_13_1 doi: 10.1080/01621459.2020.1722676 – ident: e_1_3_4_25_1 doi: 10.1080/10618600.2015.1096790 – ident: e_1_3_4_33_1 doi: 10.2307/1912526 – ident: e_1_3_4_8_1 doi: 10.1007/s00779-005-0046-3 – ident: e_1_3_4_27_1 doi: 10.1016/s0022-2836(03)00239-0 – ident: e_1_3_4_31_1 doi: 10.1093/bioinformatics/btl396 – ident: e_1_3_4_26_1 doi: 10.1038/ncomms5323 – ident: e_1_3_4_4_1 doi: 10.1080/07350015.2016.1272459 – ident: e_1_3_4_21_1 doi: 10.1038/s41567-018-0076-1 – ident: e_1_3_4_12_1 doi: 10.1103/PhysRevLett.114.028701 – ident: e_1_3_4_11_1 doi: 10.1073/pnas.0908366106 – ident: e_1_3_4_14_1 – ident: e_1_3_4_5_1 doi: 10.1080/07350015.2020.1798241 |
| SSID | ssj0001697 |
| Score | 2.3884258 |
| Snippet | Most empirical studies of complex networks return rich but noisy data, as they measure the network structure repeatedly but with substantial errors due to... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 501 |
| SubjectTerms | Algorithms Binary mixtures Community detection EM algorithm Kullback-Leibler divergence Maximum likelihood estimates Mixture distributions Network reconstruction Reconstruction Synergistic effect |
| Title | Joint Network Reconstruction and Community Detection from Rich but Noisy Data |
| URI | https://www.tandfonline.com/doi/abs/10.1080/10618600.2023.2267630 https://www.proquest.com/docview/3064404795 |
| Volume | 33 |
| WOSCitedRecordID | wos001105498600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor and Francis Online Journals customDbUrl: eissn: 1537-2715 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001697 issn: 1061-8600 databaseCode: TFW dateStart: 19920301 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yPMyDH1NxOiUHr51tmjbtUdQh4oaHibuVfMJAOrFV8L_3pUmnQ2QHPSblhfCS99W893sInVNjn5skCUD_JgFVoQgyYYcZiJc2CYt4Uyh8zyaTbDbLH3w2YeXTKm0MbRxQRKOrrXBzUbUZcRc2isnAUA9t6-8h-A8gIzZqB9NvRXM6elrq4si3VwGKwJK0NTy_rbJinVawS3_o6sYAjXb-Yeu7aNt7n_jSXZc9tKHLHtoaL6Fbqx7qWvfToTfvo_HdYl7WeOJyxbGNVb8QZzHsAvsCk_oDX-tau3lbsoJtxT4Wb0C8mFfwldf8AD2ObqZXt4FvwBBIiFzrgKicxoYznTMZK6ZJmigiM6rSzICfGwvw1zQMY6KTMG5eUWWag8ugiaFch_Eh6pSLUh8hLCKek1ArITmhKmNchYyJJNURLJxL00e0ZXwhPTq5bZLxXEQexLRlXWFZV3jW9dFwSfbi4DnWEeTfT7Wom_8ixjUxKeI1tIP2ChRe0oEEfDpqcfqT4z8sfYK6MHQpQWSAOnCS-hRtync48Nez5k5_ApQw8C4 |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwED9kCs4HP6bidGoefO1s03RtH0UdU7c-TdxbSNMUBtKJq4L_vXf9mBORPehjWi6ES-4rufsdwIVI6blJcwv1r2eJxI6tIKZhgOJlUs93VFEoPPSjKJhMwuVaGEqrpBg6LYEiCl1Nwk2X0XVK3CWFMQFa6i71_u6iA4FCgmH7uoe2lvDzx_2nhTZ2qgYrSGIRTV3F89s03-zTN_TSH9q6MEH9nf9Y_C5sVw4ouypPzB6smawFW6MFeuu8BU3yQEsA530Y3c-mWc6iMl2cUbj6BTrLcBmsqjHJP9iNyU35napWGBXts_gNiWfTOf5VuTqAx_7t-HpgVT0YLI3Ba27xJBRuqnwT-tpNfMN7XsJ1IJJekKKr68boshkcutx4tls8pOpeiF6D4alQxnYPoZHNMnMELHZUyG2TxFpxkQS-Smzfj72ecXDiUKdtEDXnpa4AyqlPxrN0KhzTmnWSWCcr1rWhuyB7KRE6VhGEy9sq8-JqJC37mEh3BW2nPgOyEnYkQbdOEFS_d_yHqc9hczAeDeXwLno4gSb-KjOEeAcauKvmFDb0O27-61lxwD8B3Xn0WA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI7QQGgceAwQgwE5cO1o07Rpj4gx8diqHYbYrUrzkCahbmIFiX-P06YDhNAOcEwjR5FjO3Zjf0bogmrz3CSIA_Y3cKh0MyfKzDAC9VI6YB4vC4UHLEmiySQe2WzChU2rNDG0roAiSlttlHsudZ0Rd2mimAgu6q5p_d0F_wF0BKL2dXCdQyPk4_7T0hh7tr8KkDiGpi7i-W2Zb9fTN_DSH8a6vIH6O_-w9120bd1PfFXJyx5aU3kLbQ2X2K2LFmoa_7OCb95Hw_vZNC9wUiWLYxOsfkLOYtgFthUmxTvuqUJV303NCjYl-zh7BeLZdAGzvOAH6LF_M76-dWwHBkdA6Fo4RMbU15ypmAlfMkXCQBIRURlGGhxdPwOHTcHQJypw_fIZVYQx-AyKaMqV6x-iRj7L1RHCmcdj4iqZCU6ojBiXLmNZECoPFo6FbiNaMz4VFp7cdMl4Tj2LYlqzLjWsSy3r2qi7JJtX-ByrCOKvp5oW5Y8RXXUxSf0VtJ1aBFKr6kACTh01QP3B8R-WPkebo14_HdwlDyeoCTNVehDpoAYcqjpFG-INzv7lrBTvD_lD8wo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+Network+Reconstruction+and+Community+Detection+from+Rich+but+Noisy+Data&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=Hu%2C+Jie&rft.au=Chen%2C+Xiao&rft.au=Chen%2C+Yu&rft.au=Zhang%2C+Weiping&rft.date=2024-04-02&rft.issn=1061-8600&rft.eissn=1537-2715&rft.volume=33&rft.issue=2&rft.spage=501&rft.epage=514&rft_id=info:doi/10.1080%2F10618600.2023.2267630&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10618600_2023_2267630 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon |