Nonlinear metric regularity on fixed sets

The aim of this paper is to study some new models of nonlinear regularity on fixed sets of set-valued mappings defined on the complete metric spaces. Slope and coderivative characterizations of these models are given. The stability of the Milyutin regularity is investigated when the initial set-valu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optimization Ročník 72; číslo 6; s. 1515 - 1548
Hlavní autoři: Tron, Nguyen Huu, Han, Dao Ngoc, Ngai, Huynh Van
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia Taylor & Francis 03.06.2023
Taylor & Francis LLC
Témata:
ISSN:0233-1934, 1029-4945
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The aim of this paper is to study some new models of nonlinear regularity on fixed sets of set-valued mappings defined on the complete metric spaces. Slope and coderivative characterizations of these models are given. The stability of the Milyutin regularity is investigated when the initial set-valued mapping is perturbed by a suitable Lipschitz single-valued map.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0233-1934
1029-4945
DOI:10.1080/02331934.2022.2031188