Nonlinear metric regularity on fixed sets
The aim of this paper is to study some new models of nonlinear regularity on fixed sets of set-valued mappings defined on the complete metric spaces. Slope and coderivative characterizations of these models are given. The stability of the Milyutin regularity is investigated when the initial set-valu...
Uloženo v:
| Vydáno v: | Optimization Ročník 72; číslo 6; s. 1515 - 1548 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Philadelphia
Taylor & Francis
03.06.2023
Taylor & Francis LLC |
| Témata: | |
| ISSN: | 0233-1934, 1029-4945 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The aim of this paper is to study some new models of nonlinear regularity on fixed sets of set-valued mappings defined on the complete metric spaces. Slope and coderivative characterizations of these models are given. The stability of the Milyutin regularity is investigated when the initial set-valued mapping is perturbed by a suitable Lipschitz single-valued map. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0233-1934 1029-4945 |
| DOI: | 10.1080/02331934.2022.2031188 |