Dimension reduction based adaptive dynamic programming for optimal control of discrete-time nonlinear control-affine systems
Dynamic programming based methods have been widely used in solving discrete-time nonlinear constrained optimal control problems. However, applying these methods in real-time is challenging because a large amount of memory is needed and the associated computational cost is high. Here, a search space...
Uložené v:
| Vydané v: | International journal of control Ročník 96; číslo 11; s. 2799 - 2811 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Abingdon
Taylor & Francis
02.11.2023
Taylor & Francis Ltd |
| Predmet: | |
| ISSN: | 0020-7179, 1366-5820 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Dynamic programming based methods have been widely used in solving discrete-time nonlinear constrained optimal control problems. However, applying these methods in real-time is challenging because a large amount of memory is needed and the associated computational cost is high. Here, a search space dimension reduction strategy is proposed for a class of nonlinear discrete-time systems that are control-affine and invertible. Specifically, a bio-inspired motion rule is combined with inverse dynamics to reduce the value iteration search space to one dimension. The corresponding suboptimal control algorithm is developed and its optimality is analysed. An adaptation rule is developed to estimate uncertainties and improve the base policy. The closed-loop system is proven to be asymptotically stable. The advantages of the algorithm including much smaller computational cost and significantly reduced memory usage are demonstrated with two simulation examples. |
|---|---|
| AbstractList | Dynamic programming based methods have been widely used in solving discrete-time nonlinear constrained optimal control problems. However, applying these methods in real-time is challenging because a large amount of memory is needed and the associated computational cost is high. Here, a search space dimension reduction strategy is proposed for a class of nonlinear discrete-time systems that are control-affine and invertible. Specifically, a bio-inspired motion rule is combined with inverse dynamics to reduce the value iteration search space to one dimension. The corresponding suboptimal control algorithm is developed and its optimality is analysed. An adaptation rule is developed to estimate uncertainties and improve the base policy. The closed-loop system is proven to be asymptotically stable. The advantages of the algorithm including much smaller computational cost and significantly reduced memory usage are demonstrated with two simulation examples. |
| Author | Li, Qiang Xu, Yunjun |
| Author_xml | – sequence: 1 givenname: Qiang surname: Li fullname: Li, Qiang organization: University of Central Florida – sequence: 2 givenname: Yunjun surname: Xu fullname: Xu, Yunjun email: yunjun.xu@ucf.edu organization: University of Central Florida |
| BookMark | eNqFkE2LFDEQhoOs4OzqTxACnnusJNPdabwo69fCghc9h5qksmTpTsYkowz4400zuxcP7ilF6nkrqeeSXcQUibHXArYCNLwFkDCKcdpKkHIrhVA7pZ-xjVDD0PVawgXbrEy3Qi_YZSn3AEL1WmzYn49hoVhCijyTO9q6Vnss5Dg6PNTwi7g7RVyC5Yec7jIuS4h33KfMU2svOHObYs1p5slzF4rNVKlrHeLtn3OIhPkR6dD7dsHLqVRaykv23ONc6NXDecV-fP70_fprd_vty831h9vOKqVrJwCH3gFMEyqxH9SAXiM5v7eod4jj3k4K7ORIAXkvhetHJxUBjV73g9upK_bmPLdt8PNIpZr7dMyxPWmkHkErUL1q1LszZXMqJZM3NlRchdSMYTYCzKrbPOo2q27zoLul-3_Sh9zs5NOTuffnXIjN6YK_U56dqXiaU_YZow3FqP-P-AsLgZwc |
| CitedBy_id | crossref_primary_10_1177_00368504241308957 |
| Cites_doi | 10.1090/qam/1944-02-03 10.1137/1.9780898718577 10.1002/9780470182963 10.1109/MRA.2012.2206474 10.1080/00207170903171314 10.1098/rspb.1995.0004 10.1016/j.automatica.2012.05.017 10.1109/CDC.1988.194354 10.1023/A:1009635226865 10.1080/00207179.2016.1266514 10.1115/1.4028849 10.1007/978-3-642-57760-4 10.1016/j.automatica.2018.10.038 10.1109/TNN.72 10.2514/3.21634 10.1073/pnas.40.4.231 10.1016/0893-6080(94)00053-O 10.1007/BF00992698 10.1007/BF00115009 10.23919/ACC45564.2020.9147911 10.1007/BFb0036070 10.1016/S0167-6911(97)00116-3 10.1109/TSMC.1983.6313077 10.1080/00207179.2013.790562 10.1515/9781400874668 10.1017/S0305004100030401 10.1016/S0893-9659(02)00148-9 10.1109/IJCNN.1989.118583 10.1007/978-1-4615-3618-5_3 10.1007/BFb0006203 10.1109/TCYB.2016.2586082 10.1016/0005-1098(87)90087-2 10.1109/JRA.1987.1087072 10.1201/9781439821091 10.1016/j.sysconle.2004.08.007 10.1137/1015071 10.1016/0893-6080(90)90088-3 10.1016/j.sysconle.2010.08.013 10.1109/9.262032 10.1016/j.conengprac.2019.104222 10.1007/978-1-4419-7997-1_8 10.1109/TCYB.2018.2821369 |
| ContentType | Journal Article |
| Copyright | 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 2022 Informa UK Limited, trading as Taylor & Francis Group |
| Copyright_xml | – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group |
| DBID | AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| DOI | 10.1080/00207179.2022.2113438 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1366-5820 |
| EndPage | 2811 |
| ExternalDocumentID | 10_1080_00207179_2022_2113438 2113438 |
| Genre | Research Article |
| GroupedDBID | -~X .7F .QJ 0BK 0R~ 29J 2DF 30N 4.4 5GY 5VS AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACBEA ACGEJ ACGFO ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMVHM AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 NX~ O9- P2P RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TN5 TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c338t-10a65d0099a31b636af8aedfbca84aa7bc930c9de30eff21d57d23e0e7f856d43 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000846699900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-7179 |
| IngestDate | Sun Nov 09 08:40:31 EST 2025 Sat Nov 29 05:46:18 EST 2025 Tue Nov 18 22:11:35 EST 2025 Mon Oct 20 23:45:29 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c338t-10a65d0099a31b636af8aedfbca84aa7bc930c9de30eff21d57d23e0e7f856d43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2870830353 |
| PQPubID | 176145 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1080_00207179_2022_2113438 crossref_primary_10_1080_00207179_2022_2113438 informaworld_taylorfrancis_310_1080_00207179_2022_2113438 proquest_journals_2870830353 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-11-02 |
| PublicationDateYYYYMMDD | 2023-11-02 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon |
| PublicationTitle | International journal of control |
| PublicationYear | 2023 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | e_1_3_2_28_1 e_1_3_2_49_1 e_1_3_2_41_1 e_1_3_2_22_1 e_1_3_2_43_1 e_1_3_2_24_1 e_1_3_2_45_1 e_1_3_2_26_1 e_1_3_2_47_1 Ogata K. (e_1_3_2_33_1) 2010 e_1_3_2_16_1 e_1_3_2_39_1 e_1_3_2_9_1 e_1_3_2_18_1 e_1_3_2_31_1 e_1_3_2_54_1 e_1_3_2_10_1 e_1_3_2_52_1 Bertsekas D. P. (e_1_3_2_7_1) 1996 e_1_3_2_12_1 e_1_3_2_35_1 e_1_3_2_5_1 e_1_3_2_14_1 e_1_3_2_56_1 e_1_3_2_3_1 e_1_3_2_50_1 Luenberger D. G. (e_1_3_2_27_1) 1979 e_1_3_2_29_1 Pontryagin L. S. (e_1_3_2_37_1) 1986 Sutton R. S. (e_1_3_2_44_1) 2018 e_1_3_2_42_1 e_1_3_2_21_1 e_1_3_2_23_1 e_1_3_2_46_1 e_1_3_2_25_1 e_1_3_2_48_1 e_1_3_2_40_1 Bertsekas D. P. (e_1_3_2_6_1) 2020 e_1_3_2_17_1 e_1_3_2_38_1 e_1_3_2_8_1 e_1_3_2_19_1 e_1_3_2_2_1 e_1_3_2_30_1 e_1_3_2_55_1 e_1_3_2_11_1 e_1_3_2_32_1 e_1_3_2_53_1 e_1_3_2_13_1 e_1_3_2_34_1 e_1_3_2_4_1 e_1_3_2_15_1 e_1_3_2_36_1 e_1_3_2_51_1 Howard R. A. (e_1_3_2_20_1) 1960 |
| References_xml | – volume-title: Rollout, policy iteration, and distributed reinforcement learning year: 2020 ident: e_1_3_2_6_1 – volume-title: Introduction to dynamic systems year: 1979 ident: e_1_3_2_27_1 – ident: e_1_3_2_17_1 doi: 10.1090/qam/1944-02-03 – ident: e_1_3_2_9_1 doi: 10.1137/1.9780898718577 – ident: e_1_3_2_38_1 doi: 10.1002/9780470182963 – ident: e_1_3_2_29_1 doi: 10.1109/MRA.2012.2206474 – ident: e_1_3_2_54_1 doi: 10.1080/00207170903171314 – ident: e_1_3_2_41_1 doi: 10.1098/rspb.1995.0004 – ident: e_1_3_2_13_1 – ident: e_1_3_2_55_1 doi: 10.1016/j.automatica.2012.05.017 – volume-title: Neuro-dynamic programming year: 1996 ident: e_1_3_2_7_1 – ident: e_1_3_2_30_1 doi: 10.1109/CDC.1988.194354 – volume-title: Mathematical theory of optimal processes year: 1986 ident: e_1_3_2_37_1 – ident: e_1_3_2_8_1 doi: 10.1023/A:1009635226865 – ident: e_1_3_2_19_1 doi: 10.1080/00207179.2016.1266514 – ident: e_1_3_2_24_1 doi: 10.1115/1.4028849 – ident: e_1_3_2_23_1 – ident: e_1_3_2_32_1 doi: 10.1007/978-3-642-57760-4 – ident: e_1_3_2_56_1 doi: 10.1016/j.automatica.2018.10.038 – ident: e_1_3_2_39_1 doi: 10.1109/TNN.72 – ident: e_1_3_2_21_1 doi: 10.2514/3.21634 – ident: e_1_3_2_3_1 doi: 10.1073/pnas.40.4.231 – ident: e_1_3_2_11_1 doi: 10.1016/0893-6080(94)00053-O – ident: e_1_3_2_47_1 doi: 10.1007/BF00992698 – ident: e_1_3_2_43_1 doi: 10.1007/BF00115009 – ident: e_1_3_2_25_1 doi: 10.23919/ACC45564.2020.9147911 – ident: e_1_3_2_22_1 doi: 10.1007/BFb0036070 – ident: e_1_3_2_53_1 – ident: e_1_3_2_15_1 doi: 10.1016/S0167-6911(97)00116-3 – ident: e_1_3_2_2_1 doi: 10.1109/TSMC.1983.6313077 – ident: e_1_3_2_26_1 doi: 10.1080/00207179.2013.790562 – ident: e_1_3_2_4_1 doi: 10.1515/9781400874668 – ident: e_1_3_2_34_1 doi: 10.1017/S0305004100030401 – ident: e_1_3_2_42_1 doi: 10.1016/S0893-9659(02)00148-9 – volume-title: Reinforcement learning: An introduction year: 2018 ident: e_1_3_2_44_1 – ident: e_1_3_2_50_1 doi: 10.1109/IJCNN.1989.118583 – ident: e_1_3_2_45_1 doi: 10.1007/978-1-4615-3618-5_3 – ident: e_1_3_2_49_1 doi: 10.1007/BFb0006203 – ident: e_1_3_2_48_1 doi: 10.1109/TCYB.2016.2586082 – ident: e_1_3_2_40_1 – ident: e_1_3_2_16_1 doi: 10.1016/0005-1098(87)90087-2 – ident: e_1_3_2_18_1 doi: 10.1109/JRA.1987.1087072 – ident: e_1_3_2_46_1 – ident: e_1_3_2_14_1 doi: 10.1201/9781439821091 – ident: e_1_3_2_51_1 – volume-title: Modern control engineering year: 2010 ident: e_1_3_2_33_1 – ident: e_1_3_2_12_1 doi: 10.1016/j.sysconle.2004.08.007 – ident: e_1_3_2_36_1 doi: 10.1137/1015071 – ident: e_1_3_2_52_1 doi: 10.1016/0893-6080(90)90088-3 – ident: e_1_3_2_10_1 doi: 10.1016/j.sysconle.2010.08.013 – ident: e_1_3_2_31_1 doi: 10.1109/9.262032 – ident: e_1_3_2_35_1 doi: 10.1016/j.conengprac.2019.104222 – ident: e_1_3_2_5_1 doi: 10.1007/978-1-4419-7997-1_8 – volume-title: Dynamic programming and markov processes year: 1960 ident: e_1_3_2_20_1 – ident: e_1_3_2_28_1 doi: 10.1109/TCYB.2018.2821369 |
| SSID | ssj0013581 |
| Score | 2.4147468 |
| Snippet | Dynamic programming based methods have been widely used in solving discrete-time nonlinear constrained optimal control problems. However, applying these... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2799 |
| SubjectTerms | Adaptive control adaptive dynamic programming Algorithms Closed loops Computational efficiency Computing costs Control theory control-affine system Discrete time systems Dynamic programming Feedback control Inverse dynamics Iterative methods Nonlinear constrained optimal control Nonlinear control Nonlinear systems Optimal control Optimization real-time control uncertainty |
| Title | Dimension reduction based adaptive dynamic programming for optimal control of discrete-time nonlinear control-affine systems |
| URI | https://www.tandfonline.com/doi/abs/10.1080/00207179.2022.2113438 https://www.proquest.com/docview/2870830353 |
| Volume | 96 |
| WOSCitedRecordID | wos000846699900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor and Francis Online Journals customDbUrl: eissn: 1366-5820 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013581 issn: 0020-7179 databaseCode: TFW dateStart: 19650101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQADb0ShIA-srhI7zmNEQMWAKoYC3Sw7tiUk-lBSmPjx-GKnFCHUAVYn5_iV851933cIXdKCW82VJNzalCQqiYjkGSPUaupKDEsb1PvTfTYc5uNx8RCiCesQVgk-tPVEEY2uhp9bqrqNiAMEN3ghADOhtO88GJYwgPs6yx6C-kaD5697BJ77nHnOSQKRFsPzWy3fdqdv3KU_dHWzAQ12_6Hpe2gnWJ_4yi-XfbRhpgdoe4WT8BB93ADfP5yh4QpoXWHiMOx1Gkst56AdsfZp7HEI7po4Qez6gGfu8cTVH-Lf8cxiQP1WzjAnkMQeT32jZdW-QqS1rgB7Qun6CD0ObkfXdySkaCCl820XTonLlGswMyWLVcpSaXNptFWlzBMpM1UWLCoLbVhkrKWx5pmmzEQmszlPdcKOUcd92pwg14fCKZM4U3FmkpQpqRhLqOLKRpFSRdRFSTs1ogz85ZBG41XES5pTP7gCBleEwe2i_lJs7gk81gkUq_MuFs3JifVpTgRbI9trF4kIuqAWcJWcO0uBs9M_VH2GtiDTfQODpD3UWVRv5hxtlu-Ll7q6aFb9J0QM_6Q |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagIAEDb0ShgAfWVIkd5zEioCqidCrQzbJjW0KiD6WBiR-PL06gFUIdYLVzjp_3sO--Q-iSpMwoJoXHjIm8UIa-J1hMPWIUsSWaRmXU-1Mv7veT4TCdj4UBt0qwoY0Diih5NRxuuIyuXeIghBvMEIgzIaRtTRga0mQVrTEra2GvDzrP3y8JLHFZ86yZBDR1FM9vzSzIpwX00h_cuhRBnZ3_6Pwu2q4UUHzldsweWtHjfbQ1B0t4gD5uAPIfrtFwDsiusHYYxJ3CQokpMEisXCZ7XPl3jSwhtoPAE1s9su1XLvB4YjAE_uZWN_cgjz0eu16LvP7EE8bYAuwwpWeH6LFzO7juelWWBi-z5m1h-biImAJNU9BARjQSJhFaGZmJJBQilllK_SxVmvraGBIoFitCta9jk7BIhfQINeyv9TGyY0gtPwliGcQ6jKgUktKQSCaN70uZ-k0U1mvDswrCHDJpvPLgC-nUTS6HyeXV5DZR-4ts6jA8lhGk8wvPi_LyxLhMJ5wuoW3Vu4RX7GDG4TU5scoCoyd_aPoCbXQHDz3eu-vfn6JNSHxfRkWSFmoU-Zs-Q-vZe_Eyy8_LI_AJUsYD0w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELXYhODAjlgK-MA1VWLHWY4IqEBUFQeW3iw7tiUklioJnPh4PLFTWiHUA1ydjBNv4xl75j2ETknOjGJSBMyYJIhlHAaCpTQgRhFbomnSZL0_9NPBIBsO81sfTVj5sErwoY0Dimh0NSzukTJtRBxkcIMXAmkmhHStB0Njms2jRWs6JxDVd9d7_L5IYJkjzbNeEsi0STy_VTO1PU2Bl_5Q1s0O1Fv_h3_fQGve_MRnbr5sojn9uoVWJ0AJt9HnBQD-wyEaLgHXFUYOw2ansFBiBOoRK8djj31014sVxLYN-M0-frH1-wB4_GYwpP2W1jIPgMUev7qfFmX7SiCMsQXYIUpXO-i-d3l3fhV4joagsM5tbbW4SJgCO1PQSCY0ESYTWhlZiCwWIpVFTsMiV5qG2hgSKZYqQnWoU5OxRMV0Fy3YT-s9ZNuQW20SpTJKdZxQKSSlMZFMmjCUMg_3UdwODS88gDnwaDzzaIxz6jqXQ-dy37n7qDsWGzkEj1kC-eS487o5OjGO54TTGbKddpJwrwwqDnfJmTUVGD34Q9UnaPn2osf714ObQ7QCrPdNSiTpoIW6fNdHaKn4qJ-q8rhZAF8_RQKF |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dimension+reduction+based+adaptive+dynamic+programming+for+optimal+control+of+discrete-time+nonlinear+control-affine+systems&rft.jtitle=International+journal+of+control&rft.au=Li%2C+Qiang&rft.au=Xu%2C+Yunjun&rft.date=2023-11-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0020-7179&rft.eissn=1366-5820&rft.volume=96&rft.issue=11&rft.spage=2799&rft.epage=2811&rft_id=info:doi/10.1080%2F00207179.2022.2113438&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7179&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7179&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7179&client=summon |