Infinite summation formulas related to Riemann Zeta function from hypergeometric series
Applying Gauss and Watson's famous hypergeometric summation theorems, the authors establish two pattern infinite summation formulas involving generalized harmonic numbers related to Riemann Zeta function.
Uloženo v:
| Vydáno v: | Journal of difference equations and applications Ročník 24; číslo 7; s. 1114 - 1125 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Abingdon
Taylor & Francis
03.07.2018
Taylor & Francis Ltd |
| Témata: | |
| ISSN: | 1023-6198, 1563-5120 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Applying Gauss and Watson's famous hypergeometric summation theorems, the authors establish two pattern infinite summation formulas involving generalized harmonic numbers related to Riemann Zeta function. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1023-6198 1563-5120 |
| DOI: | 10.1080/10236198.2018.1464562 |