Effect of Zn and Co doping on antibacterial efficacy and cytocompatibility of spark plasma sintered hydroxyapatite

Hydroxyapatite [Hap, Ca10(PO4)6(OH)2] is one of the most preferred bioceramic material for orthopedic implants and coatings due to its stoichiometric similarities with human hard tissues. However, foreign body implantation inside human body sometimes leads to bacterial film formation over the implan...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Ceramic Society Vol. 103; no. 8; pp. 4090 - 4100
Main Authors: Bhattacharjee, Arjak, Hassan, Rubia, Gupta, Anshul, Verma, Madhu, Murugan, Prem Anand, Sengupta, Pradyut, Saravanan, Matheshwaran, Manna, Indranil, Balani, Kantesh
Format: Journal Article
Language:English
Published: Columbus Wiley Subscription Services, Inc 01.08.2020
Subjects:
ISSN:0002-7820, 1551-2916
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Hydroxyapatite [Hap, Ca10(PO4)6(OH)2] is one of the most preferred bioceramic material for orthopedic implants and coatings due to its stoichiometric similarities with human hard tissues. However, foreign body implantation inside human body sometimes leads to bacterial film formation over the implant surface causing the implant failure, thereby needing a revision surgery. This study attempts to select the better dopant between zinc (Zn) and cobalt (Co) as per the antibacterial efficacy when doped in Hap. To prepare antibacterial transition‐metal‐doped Hap, Zn and Co are doped in Hap as per the chemical formula Ca10−x Mx(PO4)6(OH)2, (M = Zn or Co and x = 0.24) to improve antibacterial efficacy. Phase and microstructural characterization by Rietveld refinement, scanning electron microscopy (SEM), and Fourier transformation infrared spectroscopy (FT‐IR) confirms the doping. Evaluation of antibacterial activity against E coli reveals that both Zn‐ and Co‐doped Hap shows antibacterial property with the latter being more effective (zone of inhibition ~3 mm more) for the same level of doping. Inductively coupled plasma‐mass spectrometry confirms the presence of ~676 ppb Co+2 and ~303 ppb Zn+2 after leaching. In addition, cytotoxicity assay with NIH3T3 cell line reveals cytocompatibility of both the compositions with either dopant. The effect of spark plasma sintering on densification and mechanical properties of Co‐doped Hap is investigated for the first time and compared with Hap with the same level of Zn doping. It appears that Co‐doped Hap attains higher densification (~7% more) and fracture toughness (~2 times better) as compared to that of Zn‐doped counterpart (densification: 86% and fracture toughness: 0.75 ± 0.12 MPa √m). Thus, this study suggests that Co‐ and Zn‐doped Hap are promising candidates for bone tissue engineering with improved antibacterial properties and in addition, Co‐doped Hap can attain higher density and offer better fracture toughness than that of Hap doped with Zn. Schematic demonstrating Cobalt doping in Hap shows better antibacterial efficacy as compared to Zinc doped Hap. After spark plasma sintering, better densification and higher K1C value is obtained for Cobalt doped Hap, proving Cobalt a superior dopant as compared to Zinc in Hap.
AbstractList Hydroxyapatite [Hap, Ca10(PO4)6(OH)2] is one of the most preferred bioceramic material for orthopedic implants and coatings due to its stoichiometric similarities with human hard tissues. However, foreign body implantation inside human body sometimes leads to bacterial film formation over the implant surface causing the implant failure, thereby needing a revision surgery. This study attempts to select the better dopant between zinc (Zn) and cobalt (Co) as per the antibacterial efficacy when doped in Hap. To prepare antibacterial transition‐metal‐doped Hap, Zn and Co are doped in Hap as per the chemical formula Ca10−x Mx(PO4)6(OH)2, (M = Zn or Co and x = 0.24) to improve antibacterial efficacy. Phase and microstructural characterization by Rietveld refinement, scanning electron microscopy (SEM), and Fourier transformation infrared spectroscopy (FT‐IR) confirms the doping. Evaluation of antibacterial activity against E coli reveals that both Zn‐ and Co‐doped Hap shows antibacterial property with the latter being more effective (zone of inhibition ~3 mm more) for the same level of doping. Inductively coupled plasma‐mass spectrometry confirms the presence of ~676 ppb Co+2 and ~303 ppb Zn+2 after leaching. In addition, cytotoxicity assay with NIH3T3 cell line reveals cytocompatibility of both the compositions with either dopant. The effect of spark plasma sintering on densification and mechanical properties of Co‐doped Hap is investigated for the first time and compared with Hap with the same level of Zn doping. It appears that Co‐doped Hap attains higher densification (~7% more) and fracture toughness (~2 times better) as compared to that of Zn‐doped counterpart (densification: 86% and fracture toughness: 0.75 ± 0.12 MPa √m). Thus, this study suggests that Co‐ and Zn‐doped Hap are promising candidates for bone tissue engineering with improved antibacterial properties and in addition, Co‐doped Hap can attain higher density and offer better fracture toughness than that of Hap doped with Zn.
Hydroxyapatite [Hap, Ca 10 (PO 4 ) 6 (OH) 2 ] is one of the most preferred bioceramic material for orthopedic implants and coatings due to its stoichiometric similarities with human hard tissues. However, foreign body implantation inside human body sometimes leads to bacterial film formation over the implant surface causing the implant failure, thereby needing a revision surgery. This study attempts to select the better dopant between zinc (Zn) and cobalt (Co) as per the antibacterial efficacy when doped in Hap. To prepare antibacterial transition‐metal‐doped Hap, Zn and Co are doped in Hap as per the chemical formula Ca 10− x M x (PO 4 ) 6 (OH) 2 , (M = Zn or Co and x  = 0.24) to improve antibacterial efficacy. Phase and microstructural characterization by Rietveld refinement, scanning electron microscopy (SEM), and Fourier transformation infrared spectroscopy (FT‐IR) confirms the doping. Evaluation of antibacterial activity against E coli reveals that both Zn‐ and Co‐doped Hap shows antibacterial property with the latter being more effective (zone of inhibition ~3 mm more) for the same level of doping. Inductively coupled plasma‐mass spectrometry confirms the presence of ~676 ppb Co +2 and ~303 ppb Zn +2 after leaching. In addition, cytotoxicity assay with NIH3T3 cell line reveals cytocompatibility of both the compositions with either dopant. The effect of spark plasma sintering on densification and mechanical properties of Co‐doped Hap is investigated for the first time and compared with Hap with the same level of Zn doping. It appears that Co‐doped Hap attains higher densification (~7% more) and fracture toughness (~2 times better) as compared to that of Zn‐doped counterpart (densification: 86% and fracture toughness: 0.75 ± 0.12 MPa √m). Thus, this study suggests that Co‐ and Zn‐doped Hap are promising candidates for bone tissue engineering with improved antibacterial properties and in addition, Co‐doped Hap can attain higher density and offer better fracture toughness than that of Hap doped with Zn.
Hydroxyapatite [Hap, Ca10(PO4)6(OH)2] is one of the most preferred bioceramic material for orthopedic implants and coatings due to its stoichiometric similarities with human hard tissues. However, foreign body implantation inside human body sometimes leads to bacterial film formation over the implant surface causing the implant failure, thereby needing a revision surgery. This study attempts to select the better dopant between zinc (Zn) and cobalt (Co) as per the antibacterial efficacy when doped in Hap. To prepare antibacterial transition‐metal‐doped Hap, Zn and Co are doped in Hap as per the chemical formula Ca10−x Mx(PO4)6(OH)2, (M = Zn or Co and x = 0.24) to improve antibacterial efficacy. Phase and microstructural characterization by Rietveld refinement, scanning electron microscopy (SEM), and Fourier transformation infrared spectroscopy (FT‐IR) confirms the doping. Evaluation of antibacterial activity against E coli reveals that both Zn‐ and Co‐doped Hap shows antibacterial property with the latter being more effective (zone of inhibition ~3 mm more) for the same level of doping. Inductively coupled plasma‐mass spectrometry confirms the presence of ~676 ppb Co+2 and ~303 ppb Zn+2 after leaching. In addition, cytotoxicity assay with NIH3T3 cell line reveals cytocompatibility of both the compositions with either dopant. The effect of spark plasma sintering on densification and mechanical properties of Co‐doped Hap is investigated for the first time and compared with Hap with the same level of Zn doping. It appears that Co‐doped Hap attains higher densification (~7% more) and fracture toughness (~2 times better) as compared to that of Zn‐doped counterpart (densification: 86% and fracture toughness: 0.75 ± 0.12 MPa √m). Thus, this study suggests that Co‐ and Zn‐doped Hap are promising candidates for bone tissue engineering with improved antibacterial properties and in addition, Co‐doped Hap can attain higher density and offer better fracture toughness than that of Hap doped with Zn. Schematic demonstrating Cobalt doping in Hap shows better antibacterial efficacy as compared to Zinc doped Hap. After spark plasma sintering, better densification and higher K1C value is obtained for Cobalt doped Hap, proving Cobalt a superior dopant as compared to Zinc in Hap.
Author Sengupta, Pradyut
Saravanan, Matheshwaran
Balani, Kantesh
Murugan, Prem Anand
Hassan, Rubia
Gupta, Anshul
Bhattacharjee, Arjak
Verma, Madhu
Manna, Indranil
Author_xml – sequence: 1
  givenname: Arjak
  orcidid: 0000-0002-3152-5083
  surname: Bhattacharjee
  fullname: Bhattacharjee, Arjak
  organization: Indian Institute of Technology Kanpur
– sequence: 2
  givenname: Rubia
  surname: Hassan
  fullname: Hassan, Rubia
  organization: Indian Institute of Technology Kanpur
– sequence: 3
  givenname: Anshul
  surname: Gupta
  fullname: Gupta, Anshul
  organization: Indian Institute of Technology Kanpur
– sequence: 4
  givenname: Madhu
  surname: Verma
  fullname: Verma, Madhu
  organization: Indian Institute of Technology Kanpur
– sequence: 5
  givenname: Prem Anand
  surname: Murugan
  fullname: Murugan, Prem Anand
  organization: Indian Institute of Technology Kanpur
– sequence: 6
  givenname: Pradyut
  surname: Sengupta
  fullname: Sengupta, Pradyut
  organization: CSIR‐Institute of Minerals and Materials Technology
– sequence: 7
  givenname: Matheshwaran
  surname: Saravanan
  fullname: Saravanan, Matheshwaran
  organization: Indian Institute of Technology Kanpur
– sequence: 8
  givenname: Indranil
  surname: Manna
  fullname: Manna, Indranil
  organization: Indian Institute of Technology Kharagpur
– sequence: 9
  givenname: Kantesh
  orcidid: 0000-0003-0619-9164
  surname: Balani
  fullname: Balani, Kantesh
  email: kbalani@iitk.ac.in
  organization: Indian Institute of Technology Kanpur
BookMark eNp9kE1LAzEQhoMo2FYv_oKAN2Frkv3I9lhK_aLgRS9elml2oqnbzZqk6P57s60nEecyzPC88_GOyXFrWyTkgrMpj3G9AYVTLpmUR2TE85wnYsaLYzJijIlEloKdkrH3m1jyWZmNiFtqjSpQq-lLS6Gt6cLS2namfaV2aASzBhXQGWgoam0UqH7PqT5YZbcdRMI0JvTDDN-Be6ddA34L1Js2CrGmb33t7FcPAxvwjJxoaDye_-QJeb5ZPi3uktXj7f1ivkpUmpYyEQLztMYUszVbM1RrVCXmIs8lqAJzSOsCyxpQc6m0qNP4ICsyKCEts1xmmE7I5WFu5-zHDn2oNnbn2riyEhmXspgJPosUO1DKWe8d6kqZEO-0bXBgmoqzanC2Gpyt9s5GydUvSefMFlz_N8wP8KdpsP-HrB7mi-VB8w2f0412
CitedBy_id crossref_primary_10_1007_s11837_024_06789_8
crossref_primary_10_1016_j_apmt_2024_102393
crossref_primary_10_1016_j_ceramint_2022_12_117
crossref_primary_10_1016_j_ceramint_2021_06_244
crossref_primary_10_13168_cs_2023_0043
crossref_primary_10_3390_cryst15050396
crossref_primary_10_1007_s11665_023_08696_6
crossref_primary_10_1016_j_ceramint_2024_06_398
crossref_primary_10_1557_s43578_025_01575_x
crossref_primary_10_1016_j_susmat_2025_e01580
crossref_primary_10_1007_s00289_024_05376_w
crossref_primary_10_1038_s41598_023_40970_4
crossref_primary_10_1007_s11837_022_05361_6
crossref_primary_10_3390_ma18071543
crossref_primary_10_1021_acsbiomaterials_5c00440
crossref_primary_10_1016_j_ceramint_2021_03_278
crossref_primary_10_3390_pharmaceutics14112351
crossref_primary_10_1002_adem_202101510
Cites_doi 10.1021/am201610q
10.4103/2277-8632.158577
10.1515/bglass-2019-0002
10.1007/s10853-017-0945-5
10.1002/zaac.200390055
10.1007/s11999-010-1325-5
10.1107/S0108768105031125
10.1111/j.1749-6632.1999.tb07814.x
10.1016/j.actbio.2019.01.043
10.1016/j.biomaterials.2015.02.020
10.1039/b906639j
10.1016/j.actbio.2018.11.041
10.1039/C7MT00231A
10.1016/j.wear.2018.01.006
10.1111/ijac.13137
10.1016/j.ceramint.2016.11.027
10.1016/j.actbio.2019.05.020
10.1016/j.electacta.2017.04.127
10.1002/adem.201701062
10.2138/rmg.2005.57.10
10.1111/j.1469-7793.2003.00335.x
10.1021/cm200537v
10.1038/nchembio.1382
10.1039/C3TB21397H
10.5114/ceji.2015.52837
10.1016/j.actbio.2017.10.036
10.1021/ed062p917
10.1021/ic801491t
10.1016/j.jcat.2004.05.007
10.1107/S0021889809051395
10.1016/j.materresbull.2004.10.020
10.1016/j.msec.2018.02.014
10.1016/j.ceramint.2019.03.132
10.1016/j.msea.2017.08.039
10.1002/jbm.a.31143
10.1021/ic50131a039
10.1016/j.ceramint.2017.05.318
10.1007/s10856-012-4793-1
10.1111/j.1469-0691.2012.04002.x
10.1111/j.1551-2916.2005.00136.x
10.1002/jbm.a.30958
10.1016/j.actamat.2013.05.013
10.1016/j.ica.2017.12.015
10.1016/j.ceramint.2014.11.033
10.1063/1.2207069
10.1126/scitranslmed.3004528
10.2106/00004623-200704000-00012
10.1016/j.jeurceramsoc.2015.10.044
10.3390/ma12111814
10.1016/j.surfcoat.2018.02.100
10.1016/j.msec.2015.08.052
10.3390/ma10010092
10.1016/j.jallcom.2017.04.231
10.1007/s10856-012-4817-x
10.1016/j.ceramint.2017.05.083
10.1016/j.actbio.2017.10.028
10.1016/j.actbio.2011.12.003
10.1080/10426910903032113
10.1080/08927014.2010.527000
10.1016/S1293-2558(03)00152-3
10.1111/ijac.13303
10.1002/(SICI)1520-670X(1998)11:2/3<119::AID-JTRA5>3.0.CO;2-3
10.1111/j.1151-2916.2002.tb00489.x
10.1016/j.apsusc.2010.03.124
10.1016/j.ceramint.2015.05.090
ContentType Journal Article
Copyright 2020 The American Ceramic Society
2020 American Ceramic Society
Copyright_xml – notice: 2020 The American Ceramic Society
– notice: 2020 American Ceramic Society
DBID AAYXX
CITATION
7QQ
7SR
8FD
JG9
DOI 10.1111/jace.17077
DatabaseName CrossRef
Ceramic Abstracts
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Ceramic Abstracts
Technology Research Database
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
Engineering
EISSN 1551-2916
EndPage 4100
ExternalDocumentID 10_1111_jace_17077
JACE17077
Genre article
GrantInformation_xml – fundername: Science and Engineering Research Board
  funderid: DST/SJF/ETA‐02‐2016‐17
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1OB
1OC
29L
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEFU
ABEML
ABJNI
ABPVW
ABTAH
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACKIV
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CO8
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBO
EBS
EDO
EJD
EMK
ESX
F00
F01
F04
FEDTE
FOJGT
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
H~9
I-F
IRD
ITF
ITG
ITH
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NDZJH
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QF4
QM1
QN7
QO4
R.K
RAX
RIWAO
RJQFR
ROL
RX1
SAMSI
SJN
SUPJJ
TAE
TH9
TN5
TUS
UB1
UPT
V8K
VH1
W8V
W99
WBKPD
WFSAM
WH7
WIH
WIK
WOHZO
WQJ
WRC
WTY
WXSBR
WYISQ
XG1
YQT
ZCG
ZE2
ZY4
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
ADMLS
ADXHL
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7QQ
7SR
8FD
JG9
ID FETCH-LOGICAL-c3387-22e53de3e4b0b0ecbec8e52557ac6e5a3d6e8daef17cf2d3002064a8a384574e3
IEDL.DBID DRFUL
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000520527500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0002-7820
IngestDate Fri Jul 25 19:24:40 EDT 2025
Tue Nov 18 21:57:40 EST 2025
Sat Nov 29 06:59:25 EST 2025
Wed Jan 22 16:33:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3387-22e53de3e4b0b0ecbec8e52557ac6e5a3d6e8daef17cf2d3002064a8a384574e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0619-9164
0000-0002-3152-5083
PQID 2417769219
PQPubID 41752
PageCount 11
ParticipantIDs proquest_journals_2417769219
crossref_citationtrail_10_1111_jace_17077
crossref_primary_10_1111_jace_17077
wiley_primary_10_1111_jace_17077_JACE17077
PublicationCentury 2000
PublicationDate August 2020
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationPlace Columbus
PublicationPlace_xml – name: Columbus
PublicationTitle Journal of the American Ceramic Society
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 714
1974; 13
2019; 93
2019; 92
2010; 468
2013; 24
2019; 12
2017; 43
2013; 61
2020; 17
2019; 16
2018; 404–405
2012; 18
1985; 62
2018; 84
2005; 61
2007; 82A
2018; 88
2003; 552
2016; 36
2017; 9
2010; 26
2014; 2
2002; 85
2015; 40
2015; 41
2003; 5
2011; 23
2017; 241
1999; 893
1998; 11
2014; 10
2018; 342
2009; 24
2004; 226
2015; 4
2019; 5
2015; 52
2005; 40
2018; 65
2006; 833
2018; 20
2005; 88
2016; 58
2009; 34
2003; 629
2017; 704
2010; 43
2018; 473
2017; 52
2019; 45
2017; 10
2010; 256
2008; 47
2007; 80
2012; 4
2007; 89
2005; 57
2012; 8
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 92
  start-page: 325
  year: 2019
  end-page: 35
  article-title: Biological properties of ZnO, SiO2, and Ag2O ternary dopant plasma sprayed hydroxyapatite coating for orthopaedic and dental applications
  publication-title: Acta Biomater
– volume: 43
  start-page: 320
  issue: 2
  year: 2010
  end-page: 7
  article-title: Crystal structure of cobalt‐substituted calcium hydroxyapatite nanopowders prepared by hydrothermal processing
  publication-title: J Appl Crystallogr
– volume: 93
  start-page: 135
  year: 2019
  end-page: 51
  article-title: Recent advances in musculoskeletal local drug delivery
  publication-title: Acta Biomater
– volume: 5
  start-page: 13
  issue: 1
  year: 2019
  end-page: 33
  article-title: Investigating the effect of copper addition on SiO2‐ZnO‐CaO‐SrO‐P2O5 glass polyalkenoate cements: physical, mechanical and biological behavior
  publication-title: Biomed Glas
– volume: 45
  start-page: 12225
  issue: 9
  year: 2019
  end-page: 33
  article-title: Site‐specific antibacterial efficacy and cyto/hemo‐compatibility of zinc substituted hydroxyapatite
  publication-title: Ceram Int
– volume: 82A
  start-page: 296
  issue: 2
  year: 2007
  end-page: 303
  article-title: Nanostructural characteristics, mechanical properties, and osteoblast response of spark plasma sintered hydroxyapatite
  publication-title: J Biomed Mater Res Part A
– volume: 468
  start-page: 2392
  issue: 9
  year: 2010
  end-page: 6
  article-title: Retrospective analysis of infection rate after early reoperation in total hip arthroplasty
  publication-title: Clin Orthop Relat Res
– volume: 24
  start-page: 343
  issue: 2
  year: 2013
  end-page: 54
  article-title: Nanoparticles of cobalt‐substituted hydroxyapatite in regeneration of mandibular osteoporotic bones
  publication-title: J Mater Sci Mater Med
– volume: 52
  start-page: 113
  year: 2015
  end-page: 25
  article-title: Antimicrobial delivery systems for local infection prophylaxis in orthopedic‐and trauma surgery
  publication-title: Biomaterials
– volume: 629
  start-page: 344
  issue: 2
  year: 2003
  end-page: 52
  article-title: Crystal structure and properties of strontium phosphate apatite with oxocuprate ions in hexagonal channels
  publication-title: Zeitschrift für Anorg und Allg Chemie
– volume: 58
  start-page: 648
  year: 2016
  end-page: 58
  article-title: Cobalt doped proangiogenic hydroxyapatite for bone tissue engineering application
  publication-title: Mater Sci Eng C
– volume: 9
  start-page: 1596
  issue: 11
  year: 2017
  end-page: 609
  article-title: Cobalt and nickel impair DNA metabolism by the oxidative stress independent pathway
  publication-title: Metallomics
– volume: 20
  issue: 7
  year: 2018
  article-title: Microporous hydroxyapatite ceramic composites as tissue engineering scaffolds: an experimental and computational study
  publication-title: Adv Eng Mater
– volume: 893
  start-page: 13
  issue: 1
  year: 1999
  end-page: 8
  article-title: Fundamental aspects of reactive oxygen species, or what's the matter with oxygen?
  publication-title: Ann N Y Acad Sci
– volume: 24
  start-page: 437
  issue: 2
  year: 2013
  end-page: 45
  article-title: Zinc‐substituted hydroxyapatite: a biomaterial with enhanced bioactivity and antibacterial properties
  publication-title: J Mater Sci Mater Med
– volume: 13
  start-page: 194
  issue: 1
  year: 1974
  end-page: 207
  article-title: Infrared studies of apatites. I. Vibrational assignments for calcium, strontium, and barium hydroxyapatites utilizing isotopic substitution
  publication-title: Inorg Chem
– volume: 8
  start-page: 1180
  issue: 3
  year: 2012
  end-page: 9
  article-title: On the effect of temperature on the insertion of zinc into hydroxyapatite
  publication-title: Acta Biomater
– volume: 61
  start-page: 5198
  issue: 14
  year: 2013
  end-page: 215
  article-title: On the toughness enhancement in hydroxyapatite‐based composites
  publication-title: Acta Mater
– volume: 43
  start-page: S829
  year: 2017
  end-page: S835
  article-title: Flame sprayed zinc doped hydroxyapatite coating with antibacterial and biocompatible properties
  publication-title: Ceram Int
– volume: 10
  start-page: 92
  issue: 1
  year: 2017
  article-title: First‐row transition metal doping in calcium phosphate bioceramics: a detailed crystallographic study
  publication-title: Materials
– volume: 61
  start-page: 635
  issue: 6
  year: 2005
  end-page: 55
  article-title: Geometrical parameterization of the crystal chemistry of P63/m apatites: comparison with experimental data and ab initio results
  publication-title: Acta Crystallogr B
– volume: 552
  start-page: 335
  issue: 2
  year: 2003
  end-page: 44
  article-title: Mitochondrial formation of reactive oxygen species
  publication-title: J Physiol
– volume: 85
  start-page: 2515
  issue: 10
  year: 2002
  end-page: 22
  article-title: Model apatite systems for the stabilization of toxic metals: I, calcium lead vanadate
  publication-title: J Am Ceram Soc
– volume: 2
  start-page: 536
  issue: 5
  year: 2014
  end-page: 45
  article-title: X‐ray absorption spectroscopy shining (synchrotron) light onto the insertion of Zn 2+ in calcium phosphate ceramics and its influence on their behaviour under biological conditions
  publication-title: J Mater Chem B
– volume: 62
  start-page: 917
  issue: 11
  year: 1985
  article-title: New perspectives on the essential trace elements
  publication-title: J Chem Educ
– volume: 80
  start-page: 581
  issue: 3
  year: 2007
  end-page: 91
  article-title: Antibacterial nanosized silver substituted hydroxyapatite: synthesis and characterization
  publication-title: J Biomed Mater Res Part A
– volume: 52
  start-page: 8886
  issue: 15
  year: 2017
  end-page: 903
  article-title: Copper‐containing glass polyalkenoate cements based on SiO2–ZnO–CaO–SrO–P2O5 glasses: glass characterization, physical and antibacterial properties
  publication-title: J Mater Sci
– volume: 24
  start-page: 1096
  issue: 10–11
  year: 2009
  end-page: 103
  article-title: Hydrothermal synthesis of nanosized pure and cobalt‐exchanged hydroxyapatite
  publication-title: Mater Manuf Process
– volume: 12
  start-page: 1814
  issue: 11
  year: 2019
  article-title: Crystal chemistry and antibacterial properties of cupriferous hydroxyapatite
  publication-title: Materials
– volume: 43
  start-page: 2389
  issue: 2
  year: 2017
  end-page: 97
  article-title: Effect of doping (Mg, Mn, Zn) on the microstructure and mechanical properties of spark plasma sintered hydroxyapatites synthesized by mechanical alloying
  publication-title: Ceram Int
– volume: 10
  start-page: 35
  issue: 1
  year: 2014
  article-title: Imperfect coordination chemistry facilitates metal ion release in the Psa permease
  publication-title: Nat Chem Biol
– volume: 88
  start-page: 1253
  issue: 5
  year: 2005
  end-page: 60
  article-title: Model apatite systems for the stabilization of toxic metals: II, cation and metalloid substitutions in chlorapatites
  publication-title: J Am Ceram Soc
– volume: 4
  start-page: 75
  issue: 2
  year: 2015
  article-title: A review on role of essential trace elements in health and disease
  publication-title: J dr ntr Univ Heal Sci
– volume: 704
  start-page: 329
  year: 2017
  end-page: 43
  article-title: Multi‐functionality of carbon nanotubes reinforced 3 mol% yttria stabilized zirconia structural biocomposites
  publication-title: Mater Sci Eng A
– volume: 47
  start-page: 11774
  issue: 24
  year: 2008
  end-page: 82
  article-title: The crystal chemistry of ferric oxyhydroxyapatite
  publication-title: Inorg Chem
– volume: 4
  start-page: 153rv10
  issue: 153
  year: 2012
  article-title: Biomaterial‐associated infection: locating the finish line in the race for the surface
  publication-title: Sci Transl Med
– volume: 36
  start-page: 805
  issue: 3
  year: 2016
  end-page: 15
  article-title: Twinning induced enhancement of fracture toughness in ultrafine grained Hydroxyapatite‐Calcium Titanate composites
  publication-title: J Eur Ceram Soc
– volume: 473
  start-page: 44
  year: 2018
  end-page: 50
  article-title: Anticancer evaluation and drug delivery of new palladium(II) complexes based on the chelate of alendronate onto hydroxyapatite nanoparticles
  publication-title: Inorganica Chim Acta
– volume: 40
  start-page: 209
  issue: 2
  year: 2005
  end-page: 20
  article-title: Formation and structure of zinc‐substituted calcium hydroxyapatite
  publication-title: Mater Res Bull
– volume: 65
  start-page: 462
  year: 2018
  end-page: 74
  article-title: Cu‐doping of calcium phosphate bioceramics: from mechanism to the control of cytotoxicity
  publication-title: Acta Biomater
– volume: 18
  start-page: 1162
  issue: 12
  year: 2012
  end-page: 7
  article-title: Influence of material on the development of device‐associated infections
  publication-title: Clin Microbiol Infect
– volume: 40
  start-page: 236
  issue: 2
  year: 2015
  end-page: 42
  article-title: Selected aspects of the action of cobalt ions in the human body
  publication-title: Cent Eur J Immunol
– volume: 57
  start-page: 307
  issue: 1
  year: 2005
  end-page: 401
  article-title: Apatite–an adaptive framework structure
  publication-title: Rev Mineral Geochem
– volume: 226
  start-page: 16
  issue: 1
  year: 2004
  end-page: 24
  article-title: Cobalt‐exchanged hydroxyapatite catalysts: magnetic studies, spectroscopic investigations, performance in 2‐butanol and ethane oxidative dehydrogenations
  publication-title: J Catal
– volume: 342
  start-page: 105
  year: 2018
  end-page: 16
  article-title: Development of single‐phase silver‐doped antibacterial CDHA coatings on Ti6Al4V with sustained release
  publication-title: Surf Coatings Technol
– volume: 41
  start-page: 11323
  issue: 9, Part A
  year: 2015
  end-page: 33
  article-title: Improving the osteogenic and angiogenic properties of synthetic hydroxyapatite by dual doping of bivalent cobalt and magnesium ion
  publication-title: Ceram Int
– volume: 23
  start-page: 3072
  issue: 12
  year: 2011
  end-page: 85
  article-title: Unexpected mechanism of Zn2+ insertion in calcium phosphate bioceramics
  publication-title: Chem Mater
– volume: 89
  start-page: 780
  issue: 4
  year: 2007
  end-page: 5
  article-title: Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030
  publication-title: J Bone Joint Surg Am
– volume: 41
  start-page: 3647
  issue: 3
  year: 2015
  end-page: 52
  article-title: Spark plasma sintering of graphene reinforced hydroxyapatite composites
  publication-title: Ceram Int
– volume: 714
  start-page: 636
  year: 2017
  end-page: 67
  article-title: Biomedical materials and techniques to improve the tribological, mechanical and biomedical properties of orthopedic implants – a review article
  publication-title: J Alloy Compd
– volume: 833
  start-page: 39
  issue: 1
  year: 2006
  end-page: 42
  article-title: Densification process of OH controlled hydroxyapatite ceramics by spark plasma sintering
  publication-title: AIP Conf Proc
– volume: 84
  start-page: 414
  year: 2018
  end-page: 23
  article-title: Compositionally graded doped hydroxyapatite coating using laser and plasma spray deposition
  publication-title: Acta Biomater
– volume: 88
  start-page: 13
  year: 2018
  end-page: 24
  article-title: Antioxidant and antibacterial hydroxyapatite‐based biocomposite for orthopedic applications
  publication-title: Mater Sci Eng C
– volume: 256
  start-page: 6083
  issue: 20
  year: 2010
  end-page: 9
  article-title: characterization and antimicrobial activity of copper and zinc‐doped hydroxyapatite nanopowders
  publication-title: Appl Surf Sci
– volume: 4
  start-page: 1341
  issue: 3
  year: 2012
  end-page: 9
  article-title: Mechanical, in vitro antimicrobial, and biological properties of plasma‐sprayed silver‐doped hydroxyapatite coating
  publication-title: ACS Appl Mater Interfaces
– volume: 16
  start-page: 503
  issue: 2
  year: 2019
  end-page: 16
  article-title: In vitro cytotoxicity and ion release of multi‐ion doped hydroxyapatite
  publication-title: Int J Appl Ceram Technol
– volume: 404–405
  start-page: 12
  year: 2018
  end-page: 21
  article-title: Multi‐length scale tribology of hydroxyapatite reinforced with ceria and silver
  publication-title: Wear
– volume: 65
  start-page: 475
  year: 2018
  end-page: 85
  article-title: Strontium‐modified premixed calcium phosphate cements for the therapy of osteoporotic bone defects
  publication-title: Acta Biomater
– volume: 43
  start-page: 10442
  issue: 13
  year: 2017
  end-page: 9
  article-title: Porosity distribution affecting mechanical and biological behaviour of hydroxyapatite bioceramic composites
  publication-title: Ceram Int
– volume: 241
  start-page: 331
  year: 2017
  end-page: 40
  article-title: Improved corrosion resistance of CoCrMo alloy with self‐passivation ability facilitated by carbon ion implantation
  publication-title: Electrochim Acta
– volume: 17
  start-page: 327
  year: 2020
  end-page: 32
  article-title: Adsorption effect of Zn+2 and Co+2 on the antibacterial properties of SiC‐porcelain ceramics
  publication-title: Int J Appl Ceram Technol
– volume: 34
  start-page: 6722
  year: 2009
  end-page: 6
  article-title: The crystal chemistry of the alkaline‐earth apatites A10(PO 4)6CuxOy(H)z(A= Ca, Sr and Ba)
  publication-title: Dalt Trans
– volume: 26
  start-page: 851
  issue: 7
  year: 2010
  end-page: 8
  article-title: Antibacterial properties of nine pure metals: a laboratory study using Staphylococcus aureus and Escherichia coli
  publication-title: Biofouling
– volume: 5
  start-page: 1277
  issue: 9
  year: 2003
  end-page: 83
  article-title: Synthesis, crystal structure and properties of calcium and barium hydroxyapatites containing copper ions in hexagonal channels
  publication-title: Solid State Sci
– volume: 11
  start-page: 119
  issue: 2–3
  year: 1998
  end-page: 35
  article-title: Role of zinc in bone formation and bone resorption
  publication-title: J Trace Elem Exp Med
– ident: e_1_2_7_7_1
  doi: 10.1021/am201610q
– ident: e_1_2_7_27_1
  doi: 10.4103/2277-8632.158577
– ident: e_1_2_7_46_1
  doi: 10.1515/bglass-2019-0002
– ident: e_1_2_7_47_1
  doi: 10.1007/s10853-017-0945-5
– ident: e_1_2_7_53_1
  doi: 10.1002/zaac.200390055
– ident: e_1_2_7_3_1
  doi: 10.1007/s11999-010-1325-5
– ident: e_1_2_7_24_1
  doi: 10.1107/S0108768105031125
– ident: e_1_2_7_65_1
  doi: 10.1111/j.1749-6632.1999.tb07814.x
– ident: e_1_2_7_17_1
  doi: 10.1016/j.actbio.2019.01.043
– ident: e_1_2_7_18_1
  doi: 10.1016/j.biomaterials.2015.02.020
– ident: e_1_2_7_26_1
  doi: 10.1039/b906639j
– ident: e_1_2_7_14_1
  doi: 10.1016/j.actbio.2018.11.041
– ident: e_1_2_7_64_1
  doi: 10.1039/C7MT00231A
– ident: e_1_2_7_12_1
  doi: 10.1016/j.wear.2018.01.006
– ident: e_1_2_7_48_1
– ident: e_1_2_7_21_1
  doi: 10.1111/ijac.13137
– ident: e_1_2_7_44_1
  doi: 10.1016/j.ceramint.2016.11.027
– ident: e_1_2_7_9_1
  doi: 10.1016/j.actbio.2019.05.020
– ident: e_1_2_7_8_1
  doi: 10.1016/j.electacta.2017.04.127
– ident: e_1_2_7_13_1
  doi: 10.1002/adem.201701062
– ident: e_1_2_7_22_1
  doi: 10.2138/rmg.2005.57.10
– ident: e_1_2_7_66_1
  doi: 10.1111/j.1469-7793.2003.00335.x
– ident: e_1_2_7_39_1
  doi: 10.1021/cm200537v
– ident: e_1_2_7_63_1
  doi: 10.1038/nchembio.1382
– ident: e_1_2_7_40_1
  doi: 10.1039/C3TB21397H
– ident: e_1_2_7_31_1
  doi: 10.5114/ceji.2015.52837
– ident: e_1_2_7_15_1
  doi: 10.1016/j.actbio.2017.10.036
– ident: e_1_2_7_28_1
  doi: 10.1021/ed062p917
– ident: e_1_2_7_70_1
  doi: 10.1021/ic801491t
– ident: e_1_2_7_68_1
  doi: 10.1016/j.jcat.2004.05.007
– ident: e_1_2_7_69_1
  doi: 10.1107/S0021889809051395
– ident: e_1_2_7_50_1
  doi: 10.1016/j.materresbull.2004.10.020
– ident: e_1_2_7_11_1
  doi: 10.1016/j.msec.2018.02.014
– ident: e_1_2_7_5_1
  doi: 10.1016/j.ceramint.2019.03.132
– ident: e_1_2_7_49_1
  doi: 10.1016/j.msea.2017.08.039
– ident: e_1_2_7_57_1
  doi: 10.1002/jbm.a.31143
– ident: e_1_2_7_55_1
  doi: 10.1021/ic50131a039
– ident: e_1_2_7_32_1
  doi: 10.1016/j.ceramint.2017.05.318
– ident: e_1_2_7_51_1
  doi: 10.1007/s10856-012-4793-1
– ident: e_1_2_7_20_1
  doi: 10.1111/j.1469-0691.2012.04002.x
– ident: e_1_2_7_23_1
  doi: 10.1111/j.1551-2916.2005.00136.x
– ident: e_1_2_7_62_1
– ident: e_1_2_7_45_1
– ident: e_1_2_7_35_1
  doi: 10.1002/jbm.a.30958
– ident: e_1_2_7_60_1
  doi: 10.1016/j.actamat.2013.05.013
– ident: e_1_2_7_16_1
  doi: 10.1016/j.ica.2017.12.015
– ident: e_1_2_7_43_1
  doi: 10.1016/j.ceramint.2014.11.033
– ident: e_1_2_7_58_1
  doi: 10.1063/1.2207069
– ident: e_1_2_7_19_1
  doi: 10.1126/scitranslmed.3004528
– ident: e_1_2_7_2_1
  doi: 10.2106/00004623-200704000-00012
– ident: e_1_2_7_59_1
  doi: 10.1016/j.jeurceramsoc.2015.10.044
– ident: e_1_2_7_4_1
  doi: 10.3390/ma12111814
– ident: e_1_2_7_36_1
  doi: 10.1016/j.surfcoat.2018.02.100
– ident: e_1_2_7_30_1
  doi: 10.1016/j.msec.2015.08.052
– ident: e_1_2_7_37_1
  doi: 10.3390/ma10010092
– ident: e_1_2_7_6_1
  doi: 10.1016/j.jallcom.2017.04.231
– ident: e_1_2_7_33_1
  doi: 10.1007/s10856-012-4817-x
– ident: e_1_2_7_10_1
  doi: 10.1016/j.ceramint.2017.05.083
– ident: e_1_2_7_41_1
  doi: 10.1016/j.actbio.2017.10.028
– ident: e_1_2_7_38_1
  doi: 10.1016/j.actbio.2011.12.003
– ident: e_1_2_7_52_1
  doi: 10.1080/10426910903032113
– ident: e_1_2_7_67_1
  doi: 10.1080/08927014.2010.527000
– ident: e_1_2_7_54_1
  doi: 10.1016/S1293-2558(03)00152-3
– ident: e_1_2_7_61_1
– ident: e_1_2_7_34_1
  doi: 10.1111/ijac.13303
– ident: e_1_2_7_29_1
  doi: 10.1002/(SICI)1520-670X(1998)11:2/3<119::AID-JTRA5>3.0.CO;2-3
– ident: e_1_2_7_25_1
  doi: 10.1111/j.1151-2916.2002.tb00489.x
– ident: e_1_2_7_56_1
  doi: 10.1016/j.apsusc.2010.03.124
– ident: e_1_2_7_42_1
  doi: 10.1016/j.ceramint.2015.05.090
SSID ssj0001984
Score 2.445307
Snippet Hydroxyapatite [Hap, Ca10(PO4)6(OH)2] is one of the most preferred bioceramic material for orthopedic implants and coatings due to its stoichiometric...
Hydroxyapatite [Hap, Ca 10 (PO 4 ) 6 (OH) 2 ] is one of the most preferred bioceramic material for orthopedic implants and coatings due to its stoichiometric...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4090
SubjectTerms antibacterial
Bioceramics
Biocompatibility
Cobalt
cytocompatible
Densification
Dopants
Doping
E coli
Fourier transforms
Fracture toughness
Fractures
Hydroxyapatite
Implantation
Inductively coupled plasma mass spectrometry
Infrared spectroscopy
Leaching
Mass spectrometry
Mechanical properties
Orthopaedic implants
Orthopedics
Plasma sintering
Spark plasma sintering
Surgical implants
Tissue engineering
Toxicity
Transplants & implants
Zinc
Title Effect of Zn and Co doping on antibacterial efficacy and cytocompatibility of spark plasma sintered hydroxyapatite
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjace.17077
https://www.proquest.com/docview/2417769219
Volume 103
WOSCitedRecordID wos000520527500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1551-2916
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001984
  issn: 0002-7820
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED50-qAP_hanUwL6olDZ0rRpwZcxHSIiIiriS0mTKw61lbYK--9N0q5OEEF8a8sllFzu7rtw9wXgQMkuFV6QOKHPQod5HjpxSE0xlWlgFjJMhOWZveRXV8HDQ3g9AyeTXpiKH6I5cDOWYf21MXARF9NGLiQe93iX81mYo3rjshbMnd4M7y4bT6wTajaBv4YXrqYntZU8zejvAekLZU5jVRtshsv_-80VWKpBJulXu2IVZjBdg8Up6kH9dj8q3iuZYh3yisSYZAl5TIlIFRlkRNleKpKZD-Uormid9RA0rBNCjq2cHJeZrWMvqzLbsZlDe6n8mbxpYP4qSGEYKXJU5GmsTM2MMLIlbsDd8Ox2cO7UtzE40jUEvJSi5yp0kcXduItSKz9AT2ckXEgfPeEqHwMlMOlxmVDlGiDqMxEIN2AeZ-huQivNUtwCQnWE5AaZBajhT8KC2NdAn_lUKeF7NG7D4UQlkaypys2NGS9Rk7LoVY3sqrZhv5F9qwg6fpTqTDQb1UZaRBq8cO6H2me34cjq8JcZoov-4Mw-bf9FeAcWqMnQbclgB1pl_o67MC8_ylGR79Ub9hOQa-8B
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ha9QwFH_oTXB-0Lk5vG26gH6ZULmlSdN-HLcdU89DZJPhl5Imr3i4taPthPvvzUt79QZjMPzWlpdQ8vJefi_88gvAe2tGXMs4D5JIJIGQEoMs4USmogPM2iS59jqzUzWbxRcXybeOm0NnYVp9iH7DjSLD52sKcNqQXo1ybfDjoRop9RjWhJtHcgBrx98n59M-FbuKWizxLwnDdfqknsrTt769Iv2Dmatg1a82kxf_-Z8b8LyDmeyonRcv4REWm_BsRXzQvf2Y1zetTb0FVStjzMqc_SyYLiwbl8z601SspA_NPGuFnV0TJN0JbRbeziya0jPZm5Zou6A-XJ6qfrNrB82vNKtJk6JCy34tLLFmNNk2-ArOJydn49Ogu48hMCFJ8HKOMrQYoshG2QiNc3-M0tUkSpsIpQ5thLHVmB8qk3MbEhSNhI51GAupBIbbMCjKAl8D426NVITNYnQAKBdxFjmoLyJurY4kz4ZwsPRJajqxcroz4zLtixY3qqkf1SG8622vW4mOO632lq5NuzCtUwdflIoSl7WH8ME78Z4e0s9H4xP_tPMQ4314enr2dZpOP82-7MI6p3rdEwj3YNBUN_gGnpg_zbyu3naz9y_f1_Lx
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9RAEB5qK0UftLaKp9Uu6EuFlOtmfySP5dqj6nEUsVJ8CZvdCR5qciSpcP-9O5tcPEEE8S0Js0vY2Zn9Zvn2W4DXzo65kUkRpUqkkZASozzlRKaiA8zGpoUJOrMzPZ8nNzfpVc_NobMwnT7EsOFGkRHyNQU4Ll2xGeXG4smpHmt9B3aETJWPy53zD9Pr2ZCKfUUt1viXhOF6fdJA5Rla_74i_YKZm2A1rDbTh__5n3vwoIeZ7KybF49gC8t9uL8hPujfPi2a286mOYC6kzFmVcE-l8yUjk0q5sJpKlbRh3aRd8LOvgmS7oSxq2BnV20VmOxtR7RdUR8-T9Vf2dJD8--GNaRJUaNjX1aOWDOGbFt8DNfTi4-Ty6i_jyGyMUnwco4ydhijyMf5GK13f4LS1yTaWIXSxE5h4gwWp9oW3MUERZUwiYkTIbXA-Alsl1WJT4Fxv0ZqwmYJegBUiCRXHuoLxZ0zSvJ8BMdrn2S2FyunOzO-ZUPR4kc1C6M6gleD7bKT6Pij1eHatVkfpk3m4YvWKvVZewRvghP_0kP27mxyEZ6e_YvxEexenU-z2dv5--dwj1O5HviDh7Dd1rf4Au7aH-2iqV_2k_cnfkLybA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Zn+and+Co+doping+on+antibacterial+efficacy+and+cytocompatibility+of+spark+plasma+sintered+hydroxyapatite&rft.jtitle=Journal+of+the+American+Ceramic+Society&rft.au=Bhattacharjee%2C+Arjak&rft.au=Hassan%2C+Rubia&rft.au=Gupta%2C+Anshul&rft.au=Verma%2C+Madhu&rft.date=2020-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0002-7820&rft.eissn=1551-2916&rft.volume=103&rft.issue=8&rft.spage=4090&rft.epage=4100&rft_id=info:doi/10.1111%2Fjace.17077&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7820&client=summon