Effect of Zn and Co doping on antibacterial efficacy and cytocompatibility of spark plasma sintered hydroxyapatite
Hydroxyapatite [Hap, Ca10(PO4)6(OH)2] is one of the most preferred bioceramic material for orthopedic implants and coatings due to its stoichiometric similarities with human hard tissues. However, foreign body implantation inside human body sometimes leads to bacterial film formation over the implan...
Saved in:
| Published in: | Journal of the American Ceramic Society Vol. 103; no. 8; pp. 4090 - 4100 |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Columbus
Wiley Subscription Services, Inc
01.08.2020
|
| Subjects: | |
| ISSN: | 0002-7820, 1551-2916 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Hydroxyapatite [Hap, Ca10(PO4)6(OH)2] is one of the most preferred bioceramic material for orthopedic implants and coatings due to its stoichiometric similarities with human hard tissues. However, foreign body implantation inside human body sometimes leads to bacterial film formation over the implant surface causing the implant failure, thereby needing a revision surgery. This study attempts to select the better dopant between zinc (Zn) and cobalt (Co) as per the antibacterial efficacy when doped in Hap. To prepare antibacterial transition‐metal‐doped Hap, Zn and Co are doped in Hap as per the chemical formula Ca10−x Mx(PO4)6(OH)2, (M = Zn or Co and x = 0.24) to improve antibacterial efficacy. Phase and microstructural characterization by Rietveld refinement, scanning electron microscopy (SEM), and Fourier transformation infrared spectroscopy (FT‐IR) confirms the doping. Evaluation of antibacterial activity against E coli reveals that both Zn‐ and Co‐doped Hap shows antibacterial property with the latter being more effective (zone of inhibition ~3 mm more) for the same level of doping. Inductively coupled plasma‐mass spectrometry confirms the presence of ~676 ppb Co+2 and ~303 ppb Zn+2 after leaching. In addition, cytotoxicity assay with NIH3T3 cell line reveals cytocompatibility of both the compositions with either dopant. The effect of spark plasma sintering on densification and mechanical properties of Co‐doped Hap is investigated for the first time and compared with Hap with the same level of Zn doping. It appears that Co‐doped Hap attains higher densification (~7% more) and fracture toughness (~2 times better) as compared to that of Zn‐doped counterpart (densification: 86% and fracture toughness: 0.75 ± 0.12 MPa √m). Thus, this study suggests that Co‐ and Zn‐doped Hap are promising candidates for bone tissue engineering with improved antibacterial properties and in addition, Co‐doped Hap can attain higher density and offer better fracture toughness than that of Hap doped with Zn.
Schematic demonstrating Cobalt doping in Hap shows better antibacterial efficacy as compared to Zinc doped Hap. After spark plasma sintering, better densification and higher K1C value is obtained for Cobalt doped Hap, proving Cobalt a superior dopant as compared to Zinc in Hap. |
|---|---|
| AbstractList | Hydroxyapatite [Hap, Ca10(PO4)6(OH)2] is one of the most preferred bioceramic material for orthopedic implants and coatings due to its stoichiometric similarities with human hard tissues. However, foreign body implantation inside human body sometimes leads to bacterial film formation over the implant surface causing the implant failure, thereby needing a revision surgery. This study attempts to select the better dopant between zinc (Zn) and cobalt (Co) as per the antibacterial efficacy when doped in Hap. To prepare antibacterial transition‐metal‐doped Hap, Zn and Co are doped in Hap as per the chemical formula Ca10−x Mx(PO4)6(OH)2, (M = Zn or Co and x = 0.24) to improve antibacterial efficacy. Phase and microstructural characterization by Rietveld refinement, scanning electron microscopy (SEM), and Fourier transformation infrared spectroscopy (FT‐IR) confirms the doping. Evaluation of antibacterial activity against E coli reveals that both Zn‐ and Co‐doped Hap shows antibacterial property with the latter being more effective (zone of inhibition ~3 mm more) for the same level of doping. Inductively coupled plasma‐mass spectrometry confirms the presence of ~676 ppb Co+2 and ~303 ppb Zn+2 after leaching. In addition, cytotoxicity assay with NIH3T3 cell line reveals cytocompatibility of both the compositions with either dopant. The effect of spark plasma sintering on densification and mechanical properties of Co‐doped Hap is investigated for the first time and compared with Hap with the same level of Zn doping. It appears that Co‐doped Hap attains higher densification (~7% more) and fracture toughness (~2 times better) as compared to that of Zn‐doped counterpart (densification: 86% and fracture toughness: 0.75 ± 0.12 MPa √m). Thus, this study suggests that Co‐ and Zn‐doped Hap are promising candidates for bone tissue engineering with improved antibacterial properties and in addition, Co‐doped Hap can attain higher density and offer better fracture toughness than that of Hap doped with Zn. Hydroxyapatite [Hap, Ca 10 (PO 4 ) 6 (OH) 2 ] is one of the most preferred bioceramic material for orthopedic implants and coatings due to its stoichiometric similarities with human hard tissues. However, foreign body implantation inside human body sometimes leads to bacterial film formation over the implant surface causing the implant failure, thereby needing a revision surgery. This study attempts to select the better dopant between zinc (Zn) and cobalt (Co) as per the antibacterial efficacy when doped in Hap. To prepare antibacterial transition‐metal‐doped Hap, Zn and Co are doped in Hap as per the chemical formula Ca 10− x M x (PO 4 ) 6 (OH) 2 , (M = Zn or Co and x = 0.24) to improve antibacterial efficacy. Phase and microstructural characterization by Rietveld refinement, scanning electron microscopy (SEM), and Fourier transformation infrared spectroscopy (FT‐IR) confirms the doping. Evaluation of antibacterial activity against E coli reveals that both Zn‐ and Co‐doped Hap shows antibacterial property with the latter being more effective (zone of inhibition ~3 mm more) for the same level of doping. Inductively coupled plasma‐mass spectrometry confirms the presence of ~676 ppb Co +2 and ~303 ppb Zn +2 after leaching. In addition, cytotoxicity assay with NIH3T3 cell line reveals cytocompatibility of both the compositions with either dopant. The effect of spark plasma sintering on densification and mechanical properties of Co‐doped Hap is investigated for the first time and compared with Hap with the same level of Zn doping. It appears that Co‐doped Hap attains higher densification (~7% more) and fracture toughness (~2 times better) as compared to that of Zn‐doped counterpart (densification: 86% and fracture toughness: 0.75 ± 0.12 MPa √m). Thus, this study suggests that Co‐ and Zn‐doped Hap are promising candidates for bone tissue engineering with improved antibacterial properties and in addition, Co‐doped Hap can attain higher density and offer better fracture toughness than that of Hap doped with Zn. Hydroxyapatite [Hap, Ca10(PO4)6(OH)2] is one of the most preferred bioceramic material for orthopedic implants and coatings due to its stoichiometric similarities with human hard tissues. However, foreign body implantation inside human body sometimes leads to bacterial film formation over the implant surface causing the implant failure, thereby needing a revision surgery. This study attempts to select the better dopant between zinc (Zn) and cobalt (Co) as per the antibacterial efficacy when doped in Hap. To prepare antibacterial transition‐metal‐doped Hap, Zn and Co are doped in Hap as per the chemical formula Ca10−x Mx(PO4)6(OH)2, (M = Zn or Co and x = 0.24) to improve antibacterial efficacy. Phase and microstructural characterization by Rietveld refinement, scanning electron microscopy (SEM), and Fourier transformation infrared spectroscopy (FT‐IR) confirms the doping. Evaluation of antibacterial activity against E coli reveals that both Zn‐ and Co‐doped Hap shows antibacterial property with the latter being more effective (zone of inhibition ~3 mm more) for the same level of doping. Inductively coupled plasma‐mass spectrometry confirms the presence of ~676 ppb Co+2 and ~303 ppb Zn+2 after leaching. In addition, cytotoxicity assay with NIH3T3 cell line reveals cytocompatibility of both the compositions with either dopant. The effect of spark plasma sintering on densification and mechanical properties of Co‐doped Hap is investigated for the first time and compared with Hap with the same level of Zn doping. It appears that Co‐doped Hap attains higher densification (~7% more) and fracture toughness (~2 times better) as compared to that of Zn‐doped counterpart (densification: 86% and fracture toughness: 0.75 ± 0.12 MPa √m). Thus, this study suggests that Co‐ and Zn‐doped Hap are promising candidates for bone tissue engineering with improved antibacterial properties and in addition, Co‐doped Hap can attain higher density and offer better fracture toughness than that of Hap doped with Zn. Schematic demonstrating Cobalt doping in Hap shows better antibacterial efficacy as compared to Zinc doped Hap. After spark plasma sintering, better densification and higher K1C value is obtained for Cobalt doped Hap, proving Cobalt a superior dopant as compared to Zinc in Hap. |
| Author | Sengupta, Pradyut Saravanan, Matheshwaran Balani, Kantesh Murugan, Prem Anand Hassan, Rubia Gupta, Anshul Bhattacharjee, Arjak Verma, Madhu Manna, Indranil |
| Author_xml | – sequence: 1 givenname: Arjak orcidid: 0000-0002-3152-5083 surname: Bhattacharjee fullname: Bhattacharjee, Arjak organization: Indian Institute of Technology Kanpur – sequence: 2 givenname: Rubia surname: Hassan fullname: Hassan, Rubia organization: Indian Institute of Technology Kanpur – sequence: 3 givenname: Anshul surname: Gupta fullname: Gupta, Anshul organization: Indian Institute of Technology Kanpur – sequence: 4 givenname: Madhu surname: Verma fullname: Verma, Madhu organization: Indian Institute of Technology Kanpur – sequence: 5 givenname: Prem Anand surname: Murugan fullname: Murugan, Prem Anand organization: Indian Institute of Technology Kanpur – sequence: 6 givenname: Pradyut surname: Sengupta fullname: Sengupta, Pradyut organization: CSIR‐Institute of Minerals and Materials Technology – sequence: 7 givenname: Matheshwaran surname: Saravanan fullname: Saravanan, Matheshwaran organization: Indian Institute of Technology Kanpur – sequence: 8 givenname: Indranil surname: Manna fullname: Manna, Indranil organization: Indian Institute of Technology Kharagpur – sequence: 9 givenname: Kantesh orcidid: 0000-0003-0619-9164 surname: Balani fullname: Balani, Kantesh email: kbalani@iitk.ac.in organization: Indian Institute of Technology Kanpur |
| BookMark | eNp9kE1LAzEQhoMo2FYv_oKAN2Frkv3I9lhK_aLgRS9elml2oqnbzZqk6P57s60nEecyzPC88_GOyXFrWyTkgrMpj3G9AYVTLpmUR2TE85wnYsaLYzJijIlEloKdkrH3m1jyWZmNiFtqjSpQq-lLS6Gt6cLS2namfaV2aASzBhXQGWgoam0UqH7PqT5YZbcdRMI0JvTDDN-Be6ddA34L1Js2CrGmb33t7FcPAxvwjJxoaDye_-QJeb5ZPi3uktXj7f1ivkpUmpYyEQLztMYUszVbM1RrVCXmIs8lqAJzSOsCyxpQc6m0qNP4ICsyKCEts1xmmE7I5WFu5-zHDn2oNnbn2riyEhmXspgJPosUO1DKWe8d6kqZEO-0bXBgmoqzanC2Gpyt9s5GydUvSefMFlz_N8wP8KdpsP-HrB7mi-VB8w2f0412 |
| CitedBy_id | crossref_primary_10_1007_s11837_024_06789_8 crossref_primary_10_1016_j_apmt_2024_102393 crossref_primary_10_1016_j_ceramint_2022_12_117 crossref_primary_10_1016_j_ceramint_2021_06_244 crossref_primary_10_13168_cs_2023_0043 crossref_primary_10_3390_cryst15050396 crossref_primary_10_1007_s11665_023_08696_6 crossref_primary_10_1016_j_ceramint_2024_06_398 crossref_primary_10_1557_s43578_025_01575_x crossref_primary_10_1016_j_susmat_2025_e01580 crossref_primary_10_1007_s00289_024_05376_w crossref_primary_10_1038_s41598_023_40970_4 crossref_primary_10_1007_s11837_022_05361_6 crossref_primary_10_3390_ma18071543 crossref_primary_10_1021_acsbiomaterials_5c00440 crossref_primary_10_1016_j_ceramint_2021_03_278 crossref_primary_10_3390_pharmaceutics14112351 crossref_primary_10_1002_adem_202101510 |
| Cites_doi | 10.1021/am201610q 10.4103/2277-8632.158577 10.1515/bglass-2019-0002 10.1007/s10853-017-0945-5 10.1002/zaac.200390055 10.1007/s11999-010-1325-5 10.1107/S0108768105031125 10.1111/j.1749-6632.1999.tb07814.x 10.1016/j.actbio.2019.01.043 10.1016/j.biomaterials.2015.02.020 10.1039/b906639j 10.1016/j.actbio.2018.11.041 10.1039/C7MT00231A 10.1016/j.wear.2018.01.006 10.1111/ijac.13137 10.1016/j.ceramint.2016.11.027 10.1016/j.actbio.2019.05.020 10.1016/j.electacta.2017.04.127 10.1002/adem.201701062 10.2138/rmg.2005.57.10 10.1111/j.1469-7793.2003.00335.x 10.1021/cm200537v 10.1038/nchembio.1382 10.1039/C3TB21397H 10.5114/ceji.2015.52837 10.1016/j.actbio.2017.10.036 10.1021/ed062p917 10.1021/ic801491t 10.1016/j.jcat.2004.05.007 10.1107/S0021889809051395 10.1016/j.materresbull.2004.10.020 10.1016/j.msec.2018.02.014 10.1016/j.ceramint.2019.03.132 10.1016/j.msea.2017.08.039 10.1002/jbm.a.31143 10.1021/ic50131a039 10.1016/j.ceramint.2017.05.318 10.1007/s10856-012-4793-1 10.1111/j.1469-0691.2012.04002.x 10.1111/j.1551-2916.2005.00136.x 10.1002/jbm.a.30958 10.1016/j.actamat.2013.05.013 10.1016/j.ica.2017.12.015 10.1016/j.ceramint.2014.11.033 10.1063/1.2207069 10.1126/scitranslmed.3004528 10.2106/00004623-200704000-00012 10.1016/j.jeurceramsoc.2015.10.044 10.3390/ma12111814 10.1016/j.surfcoat.2018.02.100 10.1016/j.msec.2015.08.052 10.3390/ma10010092 10.1016/j.jallcom.2017.04.231 10.1007/s10856-012-4817-x 10.1016/j.ceramint.2017.05.083 10.1016/j.actbio.2017.10.028 10.1016/j.actbio.2011.12.003 10.1080/10426910903032113 10.1080/08927014.2010.527000 10.1016/S1293-2558(03)00152-3 10.1111/ijac.13303 10.1002/(SICI)1520-670X(1998)11:2/3<119::AID-JTRA5>3.0.CO;2-3 10.1111/j.1151-2916.2002.tb00489.x 10.1016/j.apsusc.2010.03.124 10.1016/j.ceramint.2015.05.090 |
| ContentType | Journal Article |
| Copyright | 2020 The American Ceramic Society 2020 American Ceramic Society |
| Copyright_xml | – notice: 2020 The American Ceramic Society – notice: 2020 American Ceramic Society |
| DBID | AAYXX CITATION 7QQ 7SR 8FD JG9 |
| DOI | 10.1111/jace.17077 |
| DatabaseName | CrossRef Ceramic Abstracts Engineered Materials Abstracts Technology Research Database Materials Research Database |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Ceramic Abstracts Technology Research Database |
| DatabaseTitleList | Materials Research Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Visual Arts Engineering |
| EISSN | 1551-2916 |
| EndPage | 4100 |
| ExternalDocumentID | 10_1111_jace_17077 JACE17077 |
| Genre | article |
| GrantInformation_xml | – fundername: Science and Engineering Research Board funderid: DST/SJF/ETA‐02‐2016‐17 |
| GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1OB 1OC 29L 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEFU ABEML ABJNI ABPVW ABTAH ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACKIV ACNCT ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHG ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CO8 COF CS3 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBO EBS EDO EJD EMK ESX F00 F01 F04 FEDTE FOJGT FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ H~9 I-F IRD ITF ITG ITH IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NDZJH NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QF4 QM1 QN7 QO4 R.K RAX RIWAO RJQFR ROL RX1 SAMSI SJN SUPJJ TAE TH9 TN5 TUS UB1 UPT V8K VH1 W8V W99 WBKPD WFSAM WH7 WIH WIK WOHZO WQJ WRC WTY WXSBR WYISQ XG1 YQT ZCG ZE2 ZY4 ZZTAW ~02 ~IA ~WT AAMMB AAYXX ADMLS ADXHL AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X 7QQ 7SR 8FD JG9 |
| ID | FETCH-LOGICAL-c3387-22e53de3e4b0b0ecbec8e52557ac6e5a3d6e8daef17cf2d3002064a8a384574e3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000520527500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0002-7820 |
| IngestDate | Fri Jul 25 19:24:40 EDT 2025 Tue Nov 18 21:57:40 EST 2025 Sat Nov 29 06:59:25 EST 2025 Wed Jan 22 16:33:25 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3387-22e53de3e4b0b0ecbec8e52557ac6e5a3d6e8daef17cf2d3002064a8a384574e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0619-9164 0000-0002-3152-5083 |
| PQID | 2417769219 |
| PQPubID | 41752 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2417769219 crossref_citationtrail_10_1111_jace_17077 crossref_primary_10_1111_jace_17077 wiley_primary_10_1111_jace_17077_JACE17077 |
| PublicationCentury | 2000 |
| PublicationDate | August 2020 |
| PublicationDateYYYYMMDD | 2020-08-01 |
| PublicationDate_xml | – month: 08 year: 2020 text: August 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Columbus |
| PublicationPlace_xml | – name: Columbus |
| PublicationTitle | Journal of the American Ceramic Society |
| PublicationYear | 2020 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2017; 714 1974; 13 2019; 93 2019; 92 2010; 468 2013; 24 2019; 12 2017; 43 2013; 61 2020; 17 2019; 16 2018; 404–405 2012; 18 1985; 62 2018; 84 2005; 61 2007; 82A 2018; 88 2003; 552 2016; 36 2017; 9 2010; 26 2014; 2 2002; 85 2015; 40 2015; 41 2003; 5 2011; 23 2017; 241 1999; 893 1998; 11 2014; 10 2018; 342 2009; 24 2004; 226 2015; 4 2019; 5 2015; 52 2005; 40 2018; 65 2006; 833 2018; 20 2005; 88 2016; 58 2009; 34 2003; 629 2017; 704 2010; 43 2018; 473 2017; 52 2019; 45 2017; 10 2010; 256 2008; 47 2007; 80 2012; 4 2007; 89 2005; 57 2012; 8 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
| References_xml | – volume: 92 start-page: 325 year: 2019 end-page: 35 article-title: Biological properties of ZnO, SiO2, and Ag2O ternary dopant plasma sprayed hydroxyapatite coating for orthopaedic and dental applications publication-title: Acta Biomater – volume: 43 start-page: 320 issue: 2 year: 2010 end-page: 7 article-title: Crystal structure of cobalt‐substituted calcium hydroxyapatite nanopowders prepared by hydrothermal processing publication-title: J Appl Crystallogr – volume: 93 start-page: 135 year: 2019 end-page: 51 article-title: Recent advances in musculoskeletal local drug delivery publication-title: Acta Biomater – volume: 5 start-page: 13 issue: 1 year: 2019 end-page: 33 article-title: Investigating the effect of copper addition on SiO2‐ZnO‐CaO‐SrO‐P2O5 glass polyalkenoate cements: physical, mechanical and biological behavior publication-title: Biomed Glas – volume: 45 start-page: 12225 issue: 9 year: 2019 end-page: 33 article-title: Site‐specific antibacterial efficacy and cyto/hemo‐compatibility of zinc substituted hydroxyapatite publication-title: Ceram Int – volume: 82A start-page: 296 issue: 2 year: 2007 end-page: 303 article-title: Nanostructural characteristics, mechanical properties, and osteoblast response of spark plasma sintered hydroxyapatite publication-title: J Biomed Mater Res Part A – volume: 468 start-page: 2392 issue: 9 year: 2010 end-page: 6 article-title: Retrospective analysis of infection rate after early reoperation in total hip arthroplasty publication-title: Clin Orthop Relat Res – volume: 24 start-page: 343 issue: 2 year: 2013 end-page: 54 article-title: Nanoparticles of cobalt‐substituted hydroxyapatite in regeneration of mandibular osteoporotic bones publication-title: J Mater Sci Mater Med – volume: 52 start-page: 113 year: 2015 end-page: 25 article-title: Antimicrobial delivery systems for local infection prophylaxis in orthopedic‐and trauma surgery publication-title: Biomaterials – volume: 629 start-page: 344 issue: 2 year: 2003 end-page: 52 article-title: Crystal structure and properties of strontium phosphate apatite with oxocuprate ions in hexagonal channels publication-title: Zeitschrift für Anorg und Allg Chemie – volume: 58 start-page: 648 year: 2016 end-page: 58 article-title: Cobalt doped proangiogenic hydroxyapatite for bone tissue engineering application publication-title: Mater Sci Eng C – volume: 9 start-page: 1596 issue: 11 year: 2017 end-page: 609 article-title: Cobalt and nickel impair DNA metabolism by the oxidative stress independent pathway publication-title: Metallomics – volume: 20 issue: 7 year: 2018 article-title: Microporous hydroxyapatite ceramic composites as tissue engineering scaffolds: an experimental and computational study publication-title: Adv Eng Mater – volume: 893 start-page: 13 issue: 1 year: 1999 end-page: 8 article-title: Fundamental aspects of reactive oxygen species, or what's the matter with oxygen? publication-title: Ann N Y Acad Sci – volume: 24 start-page: 437 issue: 2 year: 2013 end-page: 45 article-title: Zinc‐substituted hydroxyapatite: a biomaterial with enhanced bioactivity and antibacterial properties publication-title: J Mater Sci Mater Med – volume: 13 start-page: 194 issue: 1 year: 1974 end-page: 207 article-title: Infrared studies of apatites. I. Vibrational assignments for calcium, strontium, and barium hydroxyapatites utilizing isotopic substitution publication-title: Inorg Chem – volume: 8 start-page: 1180 issue: 3 year: 2012 end-page: 9 article-title: On the effect of temperature on the insertion of zinc into hydroxyapatite publication-title: Acta Biomater – volume: 61 start-page: 5198 issue: 14 year: 2013 end-page: 215 article-title: On the toughness enhancement in hydroxyapatite‐based composites publication-title: Acta Mater – volume: 43 start-page: S829 year: 2017 end-page: S835 article-title: Flame sprayed zinc doped hydroxyapatite coating with antibacterial and biocompatible properties publication-title: Ceram Int – volume: 10 start-page: 92 issue: 1 year: 2017 article-title: First‐row transition metal doping in calcium phosphate bioceramics: a detailed crystallographic study publication-title: Materials – volume: 61 start-page: 635 issue: 6 year: 2005 end-page: 55 article-title: Geometrical parameterization of the crystal chemistry of P63/m apatites: comparison with experimental data and ab initio results publication-title: Acta Crystallogr B – volume: 552 start-page: 335 issue: 2 year: 2003 end-page: 44 article-title: Mitochondrial formation of reactive oxygen species publication-title: J Physiol – volume: 85 start-page: 2515 issue: 10 year: 2002 end-page: 22 article-title: Model apatite systems for the stabilization of toxic metals: I, calcium lead vanadate publication-title: J Am Ceram Soc – volume: 2 start-page: 536 issue: 5 year: 2014 end-page: 45 article-title: X‐ray absorption spectroscopy shining (synchrotron) light onto the insertion of Zn 2+ in calcium phosphate ceramics and its influence on their behaviour under biological conditions publication-title: J Mater Chem B – volume: 62 start-page: 917 issue: 11 year: 1985 article-title: New perspectives on the essential trace elements publication-title: J Chem Educ – volume: 80 start-page: 581 issue: 3 year: 2007 end-page: 91 article-title: Antibacterial nanosized silver substituted hydroxyapatite: synthesis and characterization publication-title: J Biomed Mater Res Part A – volume: 52 start-page: 8886 issue: 15 year: 2017 end-page: 903 article-title: Copper‐containing glass polyalkenoate cements based on SiO2–ZnO–CaO–SrO–P2O5 glasses: glass characterization, physical and antibacterial properties publication-title: J Mater Sci – volume: 24 start-page: 1096 issue: 10–11 year: 2009 end-page: 103 article-title: Hydrothermal synthesis of nanosized pure and cobalt‐exchanged hydroxyapatite publication-title: Mater Manuf Process – volume: 12 start-page: 1814 issue: 11 year: 2019 article-title: Crystal chemistry and antibacterial properties of cupriferous hydroxyapatite publication-title: Materials – volume: 43 start-page: 2389 issue: 2 year: 2017 end-page: 97 article-title: Effect of doping (Mg, Mn, Zn) on the microstructure and mechanical properties of spark plasma sintered hydroxyapatites synthesized by mechanical alloying publication-title: Ceram Int – volume: 10 start-page: 35 issue: 1 year: 2014 article-title: Imperfect coordination chemistry facilitates metal ion release in the Psa permease publication-title: Nat Chem Biol – volume: 88 start-page: 1253 issue: 5 year: 2005 end-page: 60 article-title: Model apatite systems for the stabilization of toxic metals: II, cation and metalloid substitutions in chlorapatites publication-title: J Am Ceram Soc – volume: 4 start-page: 75 issue: 2 year: 2015 article-title: A review on role of essential trace elements in health and disease publication-title: J dr ntr Univ Heal Sci – volume: 704 start-page: 329 year: 2017 end-page: 43 article-title: Multi‐functionality of carbon nanotubes reinforced 3 mol% yttria stabilized zirconia structural biocomposites publication-title: Mater Sci Eng A – volume: 47 start-page: 11774 issue: 24 year: 2008 end-page: 82 article-title: The crystal chemistry of ferric oxyhydroxyapatite publication-title: Inorg Chem – volume: 4 start-page: 153rv10 issue: 153 year: 2012 article-title: Biomaterial‐associated infection: locating the finish line in the race for the surface publication-title: Sci Transl Med – volume: 36 start-page: 805 issue: 3 year: 2016 end-page: 15 article-title: Twinning induced enhancement of fracture toughness in ultrafine grained Hydroxyapatite‐Calcium Titanate composites publication-title: J Eur Ceram Soc – volume: 473 start-page: 44 year: 2018 end-page: 50 article-title: Anticancer evaluation and drug delivery of new palladium(II) complexes based on the chelate of alendronate onto hydroxyapatite nanoparticles publication-title: Inorganica Chim Acta – volume: 40 start-page: 209 issue: 2 year: 2005 end-page: 20 article-title: Formation and structure of zinc‐substituted calcium hydroxyapatite publication-title: Mater Res Bull – volume: 65 start-page: 462 year: 2018 end-page: 74 article-title: Cu‐doping of calcium phosphate bioceramics: from mechanism to the control of cytotoxicity publication-title: Acta Biomater – volume: 18 start-page: 1162 issue: 12 year: 2012 end-page: 7 article-title: Influence of material on the development of device‐associated infections publication-title: Clin Microbiol Infect – volume: 40 start-page: 236 issue: 2 year: 2015 end-page: 42 article-title: Selected aspects of the action of cobalt ions in the human body publication-title: Cent Eur J Immunol – volume: 57 start-page: 307 issue: 1 year: 2005 end-page: 401 article-title: Apatite–an adaptive framework structure publication-title: Rev Mineral Geochem – volume: 226 start-page: 16 issue: 1 year: 2004 end-page: 24 article-title: Cobalt‐exchanged hydroxyapatite catalysts: magnetic studies, spectroscopic investigations, performance in 2‐butanol and ethane oxidative dehydrogenations publication-title: J Catal – volume: 342 start-page: 105 year: 2018 end-page: 16 article-title: Development of single‐phase silver‐doped antibacterial CDHA coatings on Ti6Al4V with sustained release publication-title: Surf Coatings Technol – volume: 41 start-page: 11323 issue: 9, Part A year: 2015 end-page: 33 article-title: Improving the osteogenic and angiogenic properties of synthetic hydroxyapatite by dual doping of bivalent cobalt and magnesium ion publication-title: Ceram Int – volume: 23 start-page: 3072 issue: 12 year: 2011 end-page: 85 article-title: Unexpected mechanism of Zn2+ insertion in calcium phosphate bioceramics publication-title: Chem Mater – volume: 89 start-page: 780 issue: 4 year: 2007 end-page: 5 article-title: Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030 publication-title: J Bone Joint Surg Am – volume: 41 start-page: 3647 issue: 3 year: 2015 end-page: 52 article-title: Spark plasma sintering of graphene reinforced hydroxyapatite composites publication-title: Ceram Int – volume: 714 start-page: 636 year: 2017 end-page: 67 article-title: Biomedical materials and techniques to improve the tribological, mechanical and biomedical properties of orthopedic implants – a review article publication-title: J Alloy Compd – volume: 833 start-page: 39 issue: 1 year: 2006 end-page: 42 article-title: Densification process of OH controlled hydroxyapatite ceramics by spark plasma sintering publication-title: AIP Conf Proc – volume: 84 start-page: 414 year: 2018 end-page: 23 article-title: Compositionally graded doped hydroxyapatite coating using laser and plasma spray deposition publication-title: Acta Biomater – volume: 88 start-page: 13 year: 2018 end-page: 24 article-title: Antioxidant and antibacterial hydroxyapatite‐based biocomposite for orthopedic applications publication-title: Mater Sci Eng C – volume: 256 start-page: 6083 issue: 20 year: 2010 end-page: 9 article-title: characterization and antimicrobial activity of copper and zinc‐doped hydroxyapatite nanopowders publication-title: Appl Surf Sci – volume: 4 start-page: 1341 issue: 3 year: 2012 end-page: 9 article-title: Mechanical, in vitro antimicrobial, and biological properties of plasma‐sprayed silver‐doped hydroxyapatite coating publication-title: ACS Appl Mater Interfaces – volume: 16 start-page: 503 issue: 2 year: 2019 end-page: 16 article-title: In vitro cytotoxicity and ion release of multi‐ion doped hydroxyapatite publication-title: Int J Appl Ceram Technol – volume: 404–405 start-page: 12 year: 2018 end-page: 21 article-title: Multi‐length scale tribology of hydroxyapatite reinforced with ceria and silver publication-title: Wear – volume: 65 start-page: 475 year: 2018 end-page: 85 article-title: Strontium‐modified premixed calcium phosphate cements for the therapy of osteoporotic bone defects publication-title: Acta Biomater – volume: 43 start-page: 10442 issue: 13 year: 2017 end-page: 9 article-title: Porosity distribution affecting mechanical and biological behaviour of hydroxyapatite bioceramic composites publication-title: Ceram Int – volume: 241 start-page: 331 year: 2017 end-page: 40 article-title: Improved corrosion resistance of CoCrMo alloy with self‐passivation ability facilitated by carbon ion implantation publication-title: Electrochim Acta – volume: 17 start-page: 327 year: 2020 end-page: 32 article-title: Adsorption effect of Zn+2 and Co+2 on the antibacterial properties of SiC‐porcelain ceramics publication-title: Int J Appl Ceram Technol – volume: 34 start-page: 6722 year: 2009 end-page: 6 article-title: The crystal chemistry of the alkaline‐earth apatites A10(PO 4)6CuxOy(H)z(A= Ca, Sr and Ba) publication-title: Dalt Trans – volume: 26 start-page: 851 issue: 7 year: 2010 end-page: 8 article-title: Antibacterial properties of nine pure metals: a laboratory study using Staphylococcus aureus and Escherichia coli publication-title: Biofouling – volume: 5 start-page: 1277 issue: 9 year: 2003 end-page: 83 article-title: Synthesis, crystal structure and properties of calcium and barium hydroxyapatites containing copper ions in hexagonal channels publication-title: Solid State Sci – volume: 11 start-page: 119 issue: 2–3 year: 1998 end-page: 35 article-title: Role of zinc in bone formation and bone resorption publication-title: J Trace Elem Exp Med – ident: e_1_2_7_7_1 doi: 10.1021/am201610q – ident: e_1_2_7_27_1 doi: 10.4103/2277-8632.158577 – ident: e_1_2_7_46_1 doi: 10.1515/bglass-2019-0002 – ident: e_1_2_7_47_1 doi: 10.1007/s10853-017-0945-5 – ident: e_1_2_7_53_1 doi: 10.1002/zaac.200390055 – ident: e_1_2_7_3_1 doi: 10.1007/s11999-010-1325-5 – ident: e_1_2_7_24_1 doi: 10.1107/S0108768105031125 – ident: e_1_2_7_65_1 doi: 10.1111/j.1749-6632.1999.tb07814.x – ident: e_1_2_7_17_1 doi: 10.1016/j.actbio.2019.01.043 – ident: e_1_2_7_18_1 doi: 10.1016/j.biomaterials.2015.02.020 – ident: e_1_2_7_26_1 doi: 10.1039/b906639j – ident: e_1_2_7_14_1 doi: 10.1016/j.actbio.2018.11.041 – ident: e_1_2_7_64_1 doi: 10.1039/C7MT00231A – ident: e_1_2_7_12_1 doi: 10.1016/j.wear.2018.01.006 – ident: e_1_2_7_48_1 – ident: e_1_2_7_21_1 doi: 10.1111/ijac.13137 – ident: e_1_2_7_44_1 doi: 10.1016/j.ceramint.2016.11.027 – ident: e_1_2_7_9_1 doi: 10.1016/j.actbio.2019.05.020 – ident: e_1_2_7_8_1 doi: 10.1016/j.electacta.2017.04.127 – ident: e_1_2_7_13_1 doi: 10.1002/adem.201701062 – ident: e_1_2_7_22_1 doi: 10.2138/rmg.2005.57.10 – ident: e_1_2_7_66_1 doi: 10.1111/j.1469-7793.2003.00335.x – ident: e_1_2_7_39_1 doi: 10.1021/cm200537v – ident: e_1_2_7_63_1 doi: 10.1038/nchembio.1382 – ident: e_1_2_7_40_1 doi: 10.1039/C3TB21397H – ident: e_1_2_7_31_1 doi: 10.5114/ceji.2015.52837 – ident: e_1_2_7_15_1 doi: 10.1016/j.actbio.2017.10.036 – ident: e_1_2_7_28_1 doi: 10.1021/ed062p917 – ident: e_1_2_7_70_1 doi: 10.1021/ic801491t – ident: e_1_2_7_68_1 doi: 10.1016/j.jcat.2004.05.007 – ident: e_1_2_7_69_1 doi: 10.1107/S0021889809051395 – ident: e_1_2_7_50_1 doi: 10.1016/j.materresbull.2004.10.020 – ident: e_1_2_7_11_1 doi: 10.1016/j.msec.2018.02.014 – ident: e_1_2_7_5_1 doi: 10.1016/j.ceramint.2019.03.132 – ident: e_1_2_7_49_1 doi: 10.1016/j.msea.2017.08.039 – ident: e_1_2_7_57_1 doi: 10.1002/jbm.a.31143 – ident: e_1_2_7_55_1 doi: 10.1021/ic50131a039 – ident: e_1_2_7_32_1 doi: 10.1016/j.ceramint.2017.05.318 – ident: e_1_2_7_51_1 doi: 10.1007/s10856-012-4793-1 – ident: e_1_2_7_20_1 doi: 10.1111/j.1469-0691.2012.04002.x – ident: e_1_2_7_23_1 doi: 10.1111/j.1551-2916.2005.00136.x – ident: e_1_2_7_62_1 – ident: e_1_2_7_45_1 – ident: e_1_2_7_35_1 doi: 10.1002/jbm.a.30958 – ident: e_1_2_7_60_1 doi: 10.1016/j.actamat.2013.05.013 – ident: e_1_2_7_16_1 doi: 10.1016/j.ica.2017.12.015 – ident: e_1_2_7_43_1 doi: 10.1016/j.ceramint.2014.11.033 – ident: e_1_2_7_58_1 doi: 10.1063/1.2207069 – ident: e_1_2_7_19_1 doi: 10.1126/scitranslmed.3004528 – ident: e_1_2_7_2_1 doi: 10.2106/00004623-200704000-00012 – ident: e_1_2_7_59_1 doi: 10.1016/j.jeurceramsoc.2015.10.044 – ident: e_1_2_7_4_1 doi: 10.3390/ma12111814 – ident: e_1_2_7_36_1 doi: 10.1016/j.surfcoat.2018.02.100 – ident: e_1_2_7_30_1 doi: 10.1016/j.msec.2015.08.052 – ident: e_1_2_7_37_1 doi: 10.3390/ma10010092 – ident: e_1_2_7_6_1 doi: 10.1016/j.jallcom.2017.04.231 – ident: e_1_2_7_33_1 doi: 10.1007/s10856-012-4817-x – ident: e_1_2_7_10_1 doi: 10.1016/j.ceramint.2017.05.083 – ident: e_1_2_7_41_1 doi: 10.1016/j.actbio.2017.10.028 – ident: e_1_2_7_38_1 doi: 10.1016/j.actbio.2011.12.003 – ident: e_1_2_7_52_1 doi: 10.1080/10426910903032113 – ident: e_1_2_7_67_1 doi: 10.1080/08927014.2010.527000 – ident: e_1_2_7_54_1 doi: 10.1016/S1293-2558(03)00152-3 – ident: e_1_2_7_61_1 – ident: e_1_2_7_34_1 doi: 10.1111/ijac.13303 – ident: e_1_2_7_29_1 doi: 10.1002/(SICI)1520-670X(1998)11:2/3<119::AID-JTRA5>3.0.CO;2-3 – ident: e_1_2_7_25_1 doi: 10.1111/j.1151-2916.2002.tb00489.x – ident: e_1_2_7_56_1 doi: 10.1016/j.apsusc.2010.03.124 – ident: e_1_2_7_42_1 doi: 10.1016/j.ceramint.2015.05.090 |
| SSID | ssj0001984 |
| Score | 2.445307 |
| Snippet | Hydroxyapatite [Hap, Ca10(PO4)6(OH)2] is one of the most preferred bioceramic material for orthopedic implants and coatings due to its stoichiometric... Hydroxyapatite [Hap, Ca 10 (PO 4 ) 6 (OH) 2 ] is one of the most preferred bioceramic material for orthopedic implants and coatings due to its stoichiometric... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4090 |
| SubjectTerms | antibacterial Bioceramics Biocompatibility Cobalt cytocompatible Densification Dopants Doping E coli Fourier transforms Fracture toughness Fractures Hydroxyapatite Implantation Inductively coupled plasma mass spectrometry Infrared spectroscopy Leaching Mass spectrometry Mechanical properties Orthopaedic implants Orthopedics Plasma sintering Spark plasma sintering Surgical implants Tissue engineering Toxicity Transplants & implants Zinc |
| Title | Effect of Zn and Co doping on antibacterial efficacy and cytocompatibility of spark plasma sintered hydroxyapatite |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjace.17077 https://www.proquest.com/docview/2417769219 |
| Volume | 103 |
| WOSCitedRecordID | wos000520527500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library customDbUrl: eissn: 1551-2916 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001984 issn: 0002-7820 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED50-qAP_hanUwL6olDZ0rRpwZcxHSIiIiriS0mTKw61lbYK--9N0q5OEEF8a8sllFzu7rtw9wXgQMkuFV6QOKHPQod5HjpxSE0xlWlgFjJMhOWZveRXV8HDQ3g9AyeTXpiKH6I5cDOWYf21MXARF9NGLiQe93iX81mYo3rjshbMnd4M7y4bT6wTajaBv4YXrqYntZU8zejvAekLZU5jVRtshsv_-80VWKpBJulXu2IVZjBdg8Up6kH9dj8q3iuZYh3yisSYZAl5TIlIFRlkRNleKpKZD-Uormid9RA0rBNCjq2cHJeZrWMvqzLbsZlDe6n8mbxpYP4qSGEYKXJU5GmsTM2MMLIlbsDd8Ox2cO7UtzE40jUEvJSi5yp0kcXduItSKz9AT2ckXEgfPeEqHwMlMOlxmVDlGiDqMxEIN2AeZ-huQivNUtwCQnWE5AaZBajhT8KC2NdAn_lUKeF7NG7D4UQlkaypys2NGS9Rk7LoVY3sqrZhv5F9qwg6fpTqTDQb1UZaRBq8cO6H2me34cjq8JcZoov-4Mw-bf9FeAcWqMnQbclgB1pl_o67MC8_ylGR79Ub9hOQa-8B |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ha9QwFH_oTXB-0Lk5vG26gH6ZULmlSdN-HLcdU89DZJPhl5Imr3i4taPthPvvzUt79QZjMPzWlpdQ8vJefi_88gvAe2tGXMs4D5JIJIGQEoMs4USmogPM2iS59jqzUzWbxRcXybeOm0NnYVp9iH7DjSLD52sKcNqQXo1ybfDjoRop9RjWhJtHcgBrx98n59M-FbuKWizxLwnDdfqknsrTt769Iv2Dmatg1a82kxf_-Z8b8LyDmeyonRcv4REWm_BsRXzQvf2Y1zetTb0FVStjzMqc_SyYLiwbl8z601SspA_NPGuFnV0TJN0JbRbeziya0jPZm5Zou6A-XJ6qfrNrB82vNKtJk6JCy34tLLFmNNk2-ArOJydn49Ogu48hMCFJ8HKOMrQYoshG2QiNc3-M0tUkSpsIpQ5thLHVmB8qk3MbEhSNhI51GAupBIbbMCjKAl8D426NVITNYnQAKBdxFjmoLyJurY4kz4ZwsPRJajqxcroz4zLtixY3qqkf1SG8622vW4mOO632lq5NuzCtUwdflIoSl7WH8ME78Z4e0s9H4xP_tPMQ4314enr2dZpOP82-7MI6p3rdEwj3YNBUN_gGnpg_zbyu3naz9y_f1_Lx |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9RAEB5qK0UftLaKp9Uu6EuFlOtmfySP5dqj6nEUsVJ8CZvdCR5qciSpcP-9O5tcPEEE8S0Js0vY2Zn9Zvn2W4DXzo65kUkRpUqkkZASozzlRKaiA8zGpoUJOrMzPZ8nNzfpVc_NobMwnT7EsOFGkRHyNQU4Ll2xGeXG4smpHmt9B3aETJWPy53zD9Pr2ZCKfUUt1viXhOF6fdJA5Rla_74i_YKZm2A1rDbTh__5n3vwoIeZ7KybF49gC8t9uL8hPujfPi2a286mOYC6kzFmVcE-l8yUjk0q5sJpKlbRh3aRd8LOvgmS7oSxq2BnV20VmOxtR7RdUR8-T9Vf2dJD8--GNaRJUaNjX1aOWDOGbFt8DNfTi4-Ty6i_jyGyMUnwco4ydhijyMf5GK13f4LS1yTaWIXSxE5h4gwWp9oW3MUERZUwiYkTIbXA-Alsl1WJT4Fxv0ZqwmYJegBUiCRXHuoLxZ0zSvJ8BMdrn2S2FyunOzO-ZUPR4kc1C6M6gleD7bKT6Pij1eHatVkfpk3m4YvWKvVZewRvghP_0kP27mxyEZ6e_YvxEexenU-z2dv5--dwj1O5HviDh7Dd1rf4Au7aH-2iqV_2k_cnfkLybA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Zn+and+Co+doping+on+antibacterial+efficacy+and+cytocompatibility+of+spark+plasma+sintered+hydroxyapatite&rft.jtitle=Journal+of+the+American+Ceramic+Society&rft.au=Bhattacharjee%2C+Arjak&rft.au=Hassan%2C+Rubia&rft.au=Gupta%2C+Anshul&rft.au=Verma%2C+Madhu&rft.date=2020-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0002-7820&rft.eissn=1551-2916&rft.volume=103&rft.issue=8&rft.spage=4090&rft.epage=4100&rft_id=info:doi/10.1111%2Fjace.17077&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7820&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7820&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7820&client=summon |