An Old Babylonian Algorithm and Its Modern Applications

In this paper, an ancient Babylonian algorithm for calculating the square root of 2 is unveiled, and the potential link between this primitive technique and an ancient Chinese method is explored. The iteration process is a symmetrical property, whereby the approximate root converges to the exact one...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry (Basel) Vol. 16; no. 11; p. 1467
Main Author: He, Ji-Huan
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.11.2024
Subjects:
ISSN:2073-8994, 2073-8994
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, an ancient Babylonian algorithm for calculating the square root of 2 is unveiled, and the potential link between this primitive technique and an ancient Chinese method is explored. The iteration process is a symmetrical property, whereby the approximate root converges to the exact one through harmonious interactions between two approximate roots. Subsequently, the algorithm is extended in an ingenious manner to solve algebraic equations. To demonstrate the effectiveness of the modified algorithm, a transcendental equation that arises in MEMS systems is considered. Furthermore, the established algorithm is adeptly adapted to handle differential equations and fractal-fractional differential equations. Two illustrative examples are presented for consideration: the first is a nonlinear first-order differential equation, and the second is the renowned Duffing equation. The results demonstrate that this age-old Babylonian approach offers a novel and highly effective method for addressing contemporary problems with remarkable ease, presenting a promising solution to a diverse range of modern challenges.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2073-8994
2073-8994
DOI:10.3390/sym16111467