An Old Babylonian Algorithm and Its Modern Applications

In this paper, an ancient Babylonian algorithm for calculating the square root of 2 is unveiled, and the potential link between this primitive technique and an ancient Chinese method is explored. The iteration process is a symmetrical property, whereby the approximate root converges to the exact one...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Symmetry (Basel) Ročník 16; číslo 11; s. 1467
Hlavní autor: He, Ji-Huan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.11.2024
Témata:
ISSN:2073-8994, 2073-8994
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, an ancient Babylonian algorithm for calculating the square root of 2 is unveiled, and the potential link between this primitive technique and an ancient Chinese method is explored. The iteration process is a symmetrical property, whereby the approximate root converges to the exact one through harmonious interactions between two approximate roots. Subsequently, the algorithm is extended in an ingenious manner to solve algebraic equations. To demonstrate the effectiveness of the modified algorithm, a transcendental equation that arises in MEMS systems is considered. Furthermore, the established algorithm is adeptly adapted to handle differential equations and fractal-fractional differential equations. Two illustrative examples are presented for consideration: the first is a nonlinear first-order differential equation, and the second is the renowned Duffing equation. The results demonstrate that this age-old Babylonian approach offers a novel and highly effective method for addressing contemporary problems with remarkable ease, presenting a promising solution to a diverse range of modern challenges.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2073-8994
2073-8994
DOI:10.3390/sym16111467