Scattering Model-Based Oil-Slick-Related Parameters Estimation From Radar Remote Sensing: Feasibility and Simulation Results
In this study, the potential of electromagnetic scattering models to retrieve quantitative parameters of sea oil spills is investigated using an artificial intelligence (AI)-based approach. The backscattering coefficient of a slick-covered sea surface is predicted using the advanced integral equatio...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on geoscience and remote sensing Jg. 62; S. 1 - 12 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0196-2892, 1558-0644 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this study, the potential of electromagnetic scattering models to retrieve quantitative parameters of sea oil spills is investigated using an artificial intelligence (AI)-based approach. The backscattering coefficient of a slick-covered sea surface is predicted using the advanced integral equation model augmented with the model of local balance (MLB), an effective dielectric constant model, and a composite medium model to include the effect of an oil slick. Damping ratios (DRs), predicted for different oil parameters (namely, the oil thickness and seawater volume fraction), are used to train and test a four-layer neural network. Once successfully tested, the neural network is applied to an uninhabited aerial vehicle synthetic aperture radar (UAVSAR) image collected during the DeepWater Horizon (DWH) oil spill accident to retrieve the oil slick thickness and volume fraction of seawater in the oil layer. The inversion results show that the thicker (i.e., 2-4 mm) emulsions are located in the south and west of the slick and they are surrounded by thinner (i.e., < 1 mm) oil films. In addition, the seawater volume fraction in the oil slick is found to be about 20%-30%. Results are contrasted with optical data and previous studies of the same accidental oil spill, showing qualitatively good agreement. |
|---|---|
| AbstractList | In this study, the potential of electromagnetic scattering models to retrieve quantitative parameters of sea oil spills is investigated using an artificial intelligence (AI)-based approach. The backscattering coefficient of a slick-covered sea surface is predicted using the advanced integral equation model augmented with the model of local balance (MLB), an effective dielectric constant model, and a composite medium model to include the effect of an oil slick. Damping ratios (DRs), predicted for different oil parameters (namely, the oil thickness and seawater volume fraction), are used to train and test a four-layer neural network. Once successfully tested, the neural network is applied to an uninhabited aerial vehicle synthetic aperture radar (UAVSAR) image collected during the DeepWater Horizon (DWH) oil spill accident to retrieve the oil slick thickness and volume fraction of seawater in the oil layer. The inversion results show that the thicker (i.e., 2–4 mm) emulsions are located in the south and west of the slick and they are surrounded by thinner (i.e., In this study, the potential of electromagnetic scattering models to retrieve quantitative parameters of sea oil spills is investigated using an artificial intelligence (AI)-based approach. The backscattering coefficient of a slick-covered sea surface is predicted using the advanced integral equation model augmented with the model of local balance (MLB), an effective dielectric constant model, and a composite medium model to include the effect of an oil slick. Damping ratios (DRs), predicted for different oil parameters (namely, the oil thickness and seawater volume fraction), are used to train and test a four-layer neural network. Once successfully tested, the neural network is applied to an uninhabited aerial vehicle synthetic aperture radar (UAVSAR) image collected during the DeepWater Horizon (DWH) oil spill accident to retrieve the oil slick thickness and volume fraction of seawater in the oil layer. The inversion results show that the thicker (i.e., 2-4 mm) emulsions are located in the south and west of the slick and they are surrounded by thinner (i.e., < 1 mm) oil films. In addition, the seawater volume fraction in the oil slick is found to be about 20%-30%. Results are contrasted with optical data and previous studies of the same accidental oil spill, showing qualitatively good agreement. |
| Author | Meng, Tingyu Yang, Xiaofeng Chen, Kun-Shan Nunziata, Ferdinando Buono, Andrea Migliaccio, Maurizio |
| Author_xml | – sequence: 1 givenname: Tingyu orcidid: 0000-0003-3295-6544 surname: Meng fullname: Meng, Tingyu email: mengty@radi.ac.cn organization: National Key Laboratory of Microwave Imaging Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China – sequence: 2 givenname: Ferdinando orcidid: 0000-0003-4567-0377 surname: Nunziata fullname: Nunziata, Ferdinando email: ferdinando.nunziata@uniparthenope.it organization: Dipartimento di Ingegneria, Università degli Studi di Napoli "Parthenope,", Naples, Italy – sequence: 3 givenname: Xiaofeng orcidid: 0000-0001-9920-4641 surname: Yang fullname: Yang, Xiaofeng email: yangxf@radi.ac.cn organization: State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China – sequence: 4 givenname: Andrea orcidid: 0000-0002-5523-7609 surname: Buono fullname: Buono, Andrea email: andrea.buono@uniparthenope.it organization: Dipartimento di Ingegneria, Università degli Studi di Napoli "Parthenope,", Naples, Italy – sequence: 5 givenname: Kun-Shan orcidid: 0000-0001-7698-9861 surname: Chen fullname: Chen, Kun-Shan email: chenks@radi.ac.cn organization: Institute of Space Earth Science, Nanjing University, Suzhou Campus, Suzhou, China – sequence: 6 givenname: Maurizio orcidid: 0000-0002-8363-3502 surname: Migliaccio fullname: Migliaccio, Maurizio email: maurizio.migliaccio@uniparthenope.it organization: Dipartimento di Ingegneria, Università degli Studi di Napoli "Parthenope,", Naples, Italy |
| BookMark | eNp9kMtKw0AUhgepYL08gOBiwHXqXE5u7rS0KlSURNdhkjmV0UmiM9OF4MObmi7EhasDh_87l--QTLq-Q0JOOZtxzvKLp5uinAkmYCZlkjMh98iUx3EWsQRgQqaM50kkslwckEPvXxnjEPN0Sr7KRoWAznQv9L7XaKNr5VHTB2Oj0prmLSrQqjB0HpVTLQ5RTxc-mFYF03d06fqWFkorRwts-4C0xM4P0y7pEpU3tbEmfFLVaVqadmNHqkC_scEfk_21sh5PdvWIPC8XT_PbaPVwcze_WkWNlGmIUEOyziQkcaMQFNd1ojRgnWeJFqKGLI0ZQibS4fMsZ2muWQw6ZpyvhcQG5BE5H-e-u_5jgz5Ur_3GdcPKSuSQxpKD3KbSMdW43nuH66ox4efe4JSxFWfVVnW1VV1tVVc71QPJ_5DvbhDkPv9lzkbGIOKvPAAkXMhvKZ6MrQ |
| CODEN | IGRSD2 |
| CitedBy_id | crossref_primary_10_1109_JSTARS_2024_3472908 crossref_primary_10_3390_rs16163110 |
| Cites_doi | 10.1016/j.rse.2018.05.001 10.1029/JC094iC05p06251 10.1109/TGRS.2021.3137654 10.1016/S0034-4257(98)00034-0 10.1080/01431161.2014.905730 10.1016/j.marpolbul.2019.06.018 10.3390/s18020641 10.1109/TGRS.2013.2287916 10.1049/PBEW047E 10.1109/JSTARS.2020.3003686 10.1016/j.marpolbul.2016.06.066 10.1109/MGRS.2022.3145854 10.1016/j.marpolbul.2016.06.027 10.1002/2015jc011062 10.3390/rs13061183 10.1109/TGRS.2019.2942280 10.1080/01431160010008564 10.1109/TGRS.2018.2872080 10.1109/JSTARS.2019.2961563 10.5670/oceanog.2013.38 10.1109/TGRS.2017.2661325 10.1109/36.134085 10.1109/TGRS.2013.2259498 10.3390/rs10020319 10.1002/9781394180042 10.1109/JSTARS.2023.3285145 10.1109/TGRS.2014.2351417 10.1007/3-540-33271-5 10.3998/0472119356 10.1029/2012gl052304 10.1016/j.marpolbul.2023.114952 10.1016/S1353-2561(98)00023-1 10.1080/014311698213849 10.1109/IGARSS52108.2023.10282557 10.1109/JSTARS.2013.2244061 10.3390/s18010091 10.3390/rs11232882 10.1016/j.rse.2017.09.002 10.3390/rs12111744 10.1109/JSTARS.2016.2605151 10.1109/TGRS.2021.3073369 10.3390/rs11020160 10.1029/97JC00467 10.1029/97JC01915 10.3390/rs10071012 10.1109/TGRS.2002.807587 10.1109/TGRS.2012.2185804 10.1109/TGRS.2019.2905558 10.1063/1.869240 10.3390/w12113223 10.3390/rs15164112 10.1016/j.rse.2019.111421 10.1016/j.rse.2020.111716 10.1016/j.rse.2016.05.014 10.1016/j.ecss.2010.05.015 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2024.3369023 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 12 |
| ExternalDocumentID | 10_1109_TGRS_2024_3369023 10444612 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Agenzia Spaziale Italiana (ASI) under the APPLICAVEMARS Project within the framework of the call DC-UOT-2019-017 grantid: 2021-4-U.0 funderid: 10.13039/501100003981 – fundername: China Scholarship Council funderid: 10.13039/501100004543 – fundername: National Key Research and Development Program of China grantid: 2021YFB3901300 funderid: 10.13039/501100012166 – fundername: European Space Agency (ESA)-National Remote Sensing Center of China (NRSCC) Dragon-5 Cooperation Project grantid: 57979 funderid: 10.13039/501100000844 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c337t-ed46f83465cae4a1db6ad4eb986d22b48750e482736989079d054d5011f23ec43 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001181483300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-2892 |
| IngestDate | Mon Jun 30 08:20:12 EDT 2025 Tue Nov 18 21:52:54 EST 2025 Sat Nov 29 03:32:32 EST 2025 Wed Aug 27 02:12:32 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c337t-ed46f83465cae4a1db6ad4eb986d22b48750e482736989079d054d5011f23ec43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8363-3502 0000-0003-4567-0377 0000-0001-7698-9861 0000-0003-3295-6544 0000-0002-5523-7609 0000-0001-9920-4641 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10444612 |
| PQID | 2947531434 |
| PQPubID | 85465 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1109_TGRS_2024_3369023 crossref_primary_10_1109_TGRS_2024_3369023 ieee_primary_10444612 proquest_journals_2947531434 |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref14 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 Fingas (ref6) ref44 ref43 ref49 ref8 ref7 ref4 ref3 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 Secretariat (ref9) 2017 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref19 doi: 10.1016/j.rse.2018.05.001 – ident: ref44 doi: 10.1029/JC094iC05p06251 – ident: ref12 doi: 10.1109/TGRS.2021.3137654 – ident: ref14 doi: 10.1016/S0034-4257(98)00034-0 – ident: ref55 doi: 10.1080/01431161.2014.905730 – ident: ref46 doi: 10.1016/j.marpolbul.2019.06.018 – ident: ref7 doi: 10.3390/s18020641 – ident: ref17 doi: 10.1109/TGRS.2013.2287916 – ident: ref47 doi: 10.1049/PBEW047E – ident: ref11 doi: 10.1109/JSTARS.2020.3003686 – ident: ref10 doi: 10.1016/j.marpolbul.2016.06.066 – ident: ref27 doi: 10.1109/MGRS.2022.3145854 – ident: ref52 doi: 10.1016/j.marpolbul.2016.06.027 – ident: ref25 doi: 10.1002/2015jc011062 – ident: ref42 doi: 10.3390/rs13061183 – ident: ref29 doi: 10.1109/TGRS.2019.2942280 – ident: ref21 doi: 10.1080/01431160010008564 – ident: ref3 doi: 10.1109/TGRS.2018.2872080 – ident: ref56 doi: 10.1109/JSTARS.2019.2961563 – ident: ref57 doi: 10.5670/oceanog.2013.38 – ident: ref54 doi: 10.1109/TGRS.2017.2661325 – start-page: 617 volume-title: Proc. 35th Arctic Mar. Oil Spill Program Tech. Seminar ident: ref6 article-title: How to measure slick thickness (or not) – ident: ref38 doi: 10.1109/36.134085 – ident: ref50 doi: 10.1109/TGRS.2013.2259498 – ident: ref2 doi: 10.3390/rs10020319 – ident: ref40 doi: 10.1002/9781394180042 – ident: ref23 doi: 10.1109/JSTARS.2023.3285145 – ident: ref18 doi: 10.1109/TGRS.2014.2351417 – ident: ref4 doi: 10.1007/3-540-33271-5 – ident: ref48 doi: 10.3998/0472119356 – year: 2017 ident: ref9 publication-title: Bonn Agreement Aerial Operations Handbook – ident: ref15 doi: 10.1029/2012gl052304 – ident: ref24 doi: 10.1016/j.marpolbul.2023.114952 – ident: ref43 doi: 10.1016/S1353-2561(98)00023-1 – ident: ref20 doi: 10.1080/014311698213849 – ident: ref33 doi: 10.1109/IGARSS52108.2023.10282557 – ident: ref1 doi: 10.1109/JSTARS.2013.2244061 – ident: ref5 doi: 10.3390/s18010091 – ident: ref22 doi: 10.3390/rs11232882 – ident: ref8 doi: 10.1016/j.rse.2017.09.002 – ident: ref30 doi: 10.3390/rs12111744 – ident: ref49 doi: 10.1109/JSTARS.2016.2605151 – ident: ref34 doi: 10.1109/TGRS.2021.3073369 – ident: ref36 doi: 10.3390/rs11020160 – ident: ref39 doi: 10.1029/97JC00467 – ident: ref13 doi: 10.1029/97JC01915 – ident: ref26 doi: 10.3390/rs10071012 – ident: ref37 doi: 10.1109/TGRS.2002.807587 – ident: ref16 doi: 10.1109/TGRS.2012.2185804 – ident: ref35 doi: 10.1109/TGRS.2019.2905558 – ident: ref45 doi: 10.1063/1.869240 – ident: ref28 doi: 10.3390/w12113223 – ident: ref31 doi: 10.3390/rs15164112 – ident: ref41 doi: 10.1016/j.rse.2019.111421 – ident: ref32 doi: 10.1016/j.rse.2020.111716 – ident: ref53 doi: 10.1016/j.rse.2016.05.014 – ident: ref51 doi: 10.1016/j.ecss.2010.05.015 |
| SSID | ssj0014517 |
| Score | 2.483579 |
| Snippet | In this study, the potential of electromagnetic scattering models to retrieve quantitative parameters of sea oil spills is investigated using an artificial... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Artificial intelligence Artificial neural network (ANN) Damping Damping ratio Deep water DeepWater Horizon (DWH) Dielectric constant Electromagnetic scattering Emulsions Integral equations Mathematical models Neural networks Oil slicks oil spill Oil spills Oils Parameter estimation parameter inversion Parameters Predictive models Radar Radar imaging Remote sensing Rough surfaces SAR (radar) Scattering scattering model Sea surface Seawater Surface roughness Surface waves Synthetic aperture radar synthetic aperture radar (SAR) Thickness |
| Title | Scattering Model-Based Oil-Slick-Related Parameters Estimation From Radar Remote Sensing: Feasibility and Simulation Results |
| URI | https://ieeexplore.ieee.org/document/10444612 https://www.proquest.com/docview/2947531434 |
| Volume | 62 |
| WOSCitedRecordID | wos001181483300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELagAok9DChDdBTkB56QXBLbSZq9DbTCAypTU9DeIv-4oIo0nZp20qT98Ts7blWEQOItsnxRpC_23Wff3UfIOxGBVVpwBiJLGHoowZSTBExVlhiVoJnvwPfjazadjq-u8stQrO5rYQDAJ5_ByD36u3y7Mlt3VIYrXCJ7cZrCD7Ms64q19lcGMolDbXTKkEXwcIUZR_mH-edZgVSQy5EQyAa5-M0JeVWVP7Zi718mT__zy56R4xBI0vMO-efkATR9cnTQXrBPHvv0TtO-IHeF8X00cZg69bOafUTvZem3Rc2KemF-MZ8UhyOXymVruZab9AJXf1fYSCfr1ZLOlFVrOgMEF2jhEt-bn2cUY8iQYXtLVWNpsVgGRTCc2m7rTXtCvk8u5p--sKC7wIwQ2YaBlWk1FjJFtECq2OpUWQk6H6eWc-0oTgSufahw6pNRlluM-2yCO0XFBRgpXpJes2rgFaHo_HRseaWVNDJSMNagdFylwmiNgZwZkGgHRGlCU3KnjVGXnpxEeemwKx12ZcBuQN7vTa67jhz_mnziwDqY2OE0IMMd3GVYtG3Jc4nkDQNIefoXs9fkiXt7dwQzJL3NegtvyCNzs1m067f-f7wHnTfdtQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6hAQIe-DGGKBvgB56QPBLbSRrexrQyRClTU9DeIv-4ThVZipoWCYk_fmfHm4YQSLxFlk-J9MW---y7-wBeyQSdNlJwlEXGyUNJrr0kYK6LzOqMzEIHvq_jYjIZnp6WJ7FYPdTCIGJIPsN9_xju8t3SbvxRGa1wRezFawrfzJQSaV-udXVpoLI0VkfnnHiEiJeYaVK-mb2fVkQGhdqXkvigkL-5oaCr8sdmHDzM6MF_fttDuB9DSXbQY_8IbmC7DfeuNRjchtshwdN2j-FXZUMnTRpmXv-s4e_Ifzn2edHwqlnYbzykxdHIifb5Wr7pJjui9d-XNrLRannOptrpFZsiwYus8qnv7dlbRlFkzLH9yXTrWLU4j5pgNLXbNOtuB76MjmaHxzwqL3ArZbHm6FQ-H0qVE16odOpMrp1CUw5zJ4TxJCdB30BUev3JpCgdRX4uo71iLiRaJZ_AVrts8Skwcn8mdWJutLIq0Tg0qE06z6U1hkI5O4DkEojaxrbkXh2jqQM9ScraY1d77OqI3QBeX5l873ty_Gvyjgfr2sQepwHsXcJdx2Xb1aJURN8ohFTP_mL2Eu4czz6N6_GHycdduOvf1B_I7MHWerXB53DL_lgvutWL8G9eAEtP4Pw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scattering+Model-Based+Oil-Slick-Related+Parameters+Estimation+From+Radar+Remote+Sensing%3A+Feasibility+and+Simulation+Results&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Meng%2C+Tingyu&rft.au=Nunziata%2C+Ferdinando&rft.au=Yang%2C+Xiaofeng&rft.au=Buono%2C+Andrea&rft.date=2024&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=62&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTGRS.2024.3369023&rft.externalDocID=10444612 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |