Scattering Model-Based Oil-Slick-Related Parameters Estimation From Radar Remote Sensing: Feasibility and Simulation Results

In this study, the potential of electromagnetic scattering models to retrieve quantitative parameters of sea oil spills is investigated using an artificial intelligence (AI)-based approach. The backscattering coefficient of a slick-covered sea surface is predicted using the advanced integral equatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing Jg. 62; S. 1 - 12
Hauptverfasser: Meng, Tingyu, Nunziata, Ferdinando, Yang, Xiaofeng, Buono, Andrea, Chen, Kun-Shan, Migliaccio, Maurizio
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0196-2892, 1558-0644
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this study, the potential of electromagnetic scattering models to retrieve quantitative parameters of sea oil spills is investigated using an artificial intelligence (AI)-based approach. The backscattering coefficient of a slick-covered sea surface is predicted using the advanced integral equation model augmented with the model of local balance (MLB), an effective dielectric constant model, and a composite medium model to include the effect of an oil slick. Damping ratios (DRs), predicted for different oil parameters (namely, the oil thickness and seawater volume fraction), are used to train and test a four-layer neural network. Once successfully tested, the neural network is applied to an uninhabited aerial vehicle synthetic aperture radar (UAVSAR) image collected during the DeepWater Horizon (DWH) oil spill accident to retrieve the oil slick thickness and volume fraction of seawater in the oil layer. The inversion results show that the thicker (i.e., 2-4 mm) emulsions are located in the south and west of the slick and they are surrounded by thinner (i.e., < 1 mm) oil films. In addition, the seawater volume fraction in the oil slick is found to be about 20%-30%. Results are contrasted with optical data and previous studies of the same accidental oil spill, showing qualitatively good agreement.
AbstractList In this study, the potential of electromagnetic scattering models to retrieve quantitative parameters of sea oil spills is investigated using an artificial intelligence (AI)-based approach. The backscattering coefficient of a slick-covered sea surface is predicted using the advanced integral equation model augmented with the model of local balance (MLB), an effective dielectric constant model, and a composite medium model to include the effect of an oil slick. Damping ratios (DRs), predicted for different oil parameters (namely, the oil thickness and seawater volume fraction), are used to train and test a four-layer neural network. Once successfully tested, the neural network is applied to an uninhabited aerial vehicle synthetic aperture radar (UAVSAR) image collected during the DeepWater Horizon (DWH) oil spill accident to retrieve the oil slick thickness and volume fraction of seawater in the oil layer. The inversion results show that the thicker (i.e., 2–4 mm) emulsions are located in the south and west of the slick and they are surrounded by thinner (i.e.,
In this study, the potential of electromagnetic scattering models to retrieve quantitative parameters of sea oil spills is investigated using an artificial intelligence (AI)-based approach. The backscattering coefficient of a slick-covered sea surface is predicted using the advanced integral equation model augmented with the model of local balance (MLB), an effective dielectric constant model, and a composite medium model to include the effect of an oil slick. Damping ratios (DRs), predicted for different oil parameters (namely, the oil thickness and seawater volume fraction), are used to train and test a four-layer neural network. Once successfully tested, the neural network is applied to an uninhabited aerial vehicle synthetic aperture radar (UAVSAR) image collected during the DeepWater Horizon (DWH) oil spill accident to retrieve the oil slick thickness and volume fraction of seawater in the oil layer. The inversion results show that the thicker (i.e., 2-4 mm) emulsions are located in the south and west of the slick and they are surrounded by thinner (i.e., < 1 mm) oil films. In addition, the seawater volume fraction in the oil slick is found to be about 20%-30%. Results are contrasted with optical data and previous studies of the same accidental oil spill, showing qualitatively good agreement.
Author Meng, Tingyu
Yang, Xiaofeng
Chen, Kun-Shan
Nunziata, Ferdinando
Buono, Andrea
Migliaccio, Maurizio
Author_xml – sequence: 1
  givenname: Tingyu
  orcidid: 0000-0003-3295-6544
  surname: Meng
  fullname: Meng, Tingyu
  email: mengty@radi.ac.cn
  organization: National Key Laboratory of Microwave Imaging Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
– sequence: 2
  givenname: Ferdinando
  orcidid: 0000-0003-4567-0377
  surname: Nunziata
  fullname: Nunziata, Ferdinando
  email: ferdinando.nunziata@uniparthenope.it
  organization: Dipartimento di Ingegneria, Università degli Studi di Napoli "Parthenope,", Naples, Italy
– sequence: 3
  givenname: Xiaofeng
  orcidid: 0000-0001-9920-4641
  surname: Yang
  fullname: Yang, Xiaofeng
  email: yangxf@radi.ac.cn
  organization: State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
– sequence: 4
  givenname: Andrea
  orcidid: 0000-0002-5523-7609
  surname: Buono
  fullname: Buono, Andrea
  email: andrea.buono@uniparthenope.it
  organization: Dipartimento di Ingegneria, Università degli Studi di Napoli "Parthenope,", Naples, Italy
– sequence: 5
  givenname: Kun-Shan
  orcidid: 0000-0001-7698-9861
  surname: Chen
  fullname: Chen, Kun-Shan
  email: chenks@radi.ac.cn
  organization: Institute of Space Earth Science, Nanjing University, Suzhou Campus, Suzhou, China
– sequence: 6
  givenname: Maurizio
  orcidid: 0000-0002-8363-3502
  surname: Migliaccio
  fullname: Migliaccio, Maurizio
  email: maurizio.migliaccio@uniparthenope.it
  organization: Dipartimento di Ingegneria, Università degli Studi di Napoli "Parthenope,", Naples, Italy
BookMark eNp9kMtKw0AUhgepYL08gOBiwHXqXE5u7rS0KlSURNdhkjmV0UmiM9OF4MObmi7EhasDh_87l--QTLq-Q0JOOZtxzvKLp5uinAkmYCZlkjMh98iUx3EWsQRgQqaM50kkslwckEPvXxnjEPN0Sr7KRoWAznQv9L7XaKNr5VHTB2Oj0prmLSrQqjB0HpVTLQ5RTxc-mFYF03d06fqWFkorRwts-4C0xM4P0y7pEpU3tbEmfFLVaVqadmNHqkC_scEfk_21sh5PdvWIPC8XT_PbaPVwcze_WkWNlGmIUEOyziQkcaMQFNd1ojRgnWeJFqKGLI0ZQibS4fMsZ2muWQw6ZpyvhcQG5BE5H-e-u_5jgz5Ur_3GdcPKSuSQxpKD3KbSMdW43nuH66ox4efe4JSxFWfVVnW1VV1tVVc71QPJ_5DvbhDkPv9lzkbGIOKvPAAkXMhvKZ6MrQ
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_JSTARS_2024_3472908
crossref_primary_10_3390_rs16163110
Cites_doi 10.1016/j.rse.2018.05.001
10.1029/JC094iC05p06251
10.1109/TGRS.2021.3137654
10.1016/S0034-4257(98)00034-0
10.1080/01431161.2014.905730
10.1016/j.marpolbul.2019.06.018
10.3390/s18020641
10.1109/TGRS.2013.2287916
10.1049/PBEW047E
10.1109/JSTARS.2020.3003686
10.1016/j.marpolbul.2016.06.066
10.1109/MGRS.2022.3145854
10.1016/j.marpolbul.2016.06.027
10.1002/2015jc011062
10.3390/rs13061183
10.1109/TGRS.2019.2942280
10.1080/01431160010008564
10.1109/TGRS.2018.2872080
10.1109/JSTARS.2019.2961563
10.5670/oceanog.2013.38
10.1109/TGRS.2017.2661325
10.1109/36.134085
10.1109/TGRS.2013.2259498
10.3390/rs10020319
10.1002/9781394180042
10.1109/JSTARS.2023.3285145
10.1109/TGRS.2014.2351417
10.1007/3-540-33271-5
10.3998/0472119356
10.1029/2012gl052304
10.1016/j.marpolbul.2023.114952
10.1016/S1353-2561(98)00023-1
10.1080/014311698213849
10.1109/IGARSS52108.2023.10282557
10.1109/JSTARS.2013.2244061
10.3390/s18010091
10.3390/rs11232882
10.1016/j.rse.2017.09.002
10.3390/rs12111744
10.1109/JSTARS.2016.2605151
10.1109/TGRS.2021.3073369
10.3390/rs11020160
10.1029/97JC00467
10.1029/97JC01915
10.3390/rs10071012
10.1109/TGRS.2002.807587
10.1109/TGRS.2012.2185804
10.1109/TGRS.2019.2905558
10.1063/1.869240
10.3390/w12113223
10.3390/rs15164112
10.1016/j.rse.2019.111421
10.1016/j.rse.2020.111716
10.1016/j.rse.2016.05.014
10.1016/j.ecss.2010.05.015
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2024.3369023
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 12
ExternalDocumentID 10_1109_TGRS_2024_3369023
10444612
Genre orig-research
GrantInformation_xml – fundername: Agenzia Spaziale Italiana (ASI) under the APPLICAVEMARS Project within the framework of the call DC-UOT-2019-017
  grantid: 2021-4-U.0
  funderid: 10.13039/501100003981
– fundername: China Scholarship Council
  funderid: 10.13039/501100004543
– fundername: National Key Research and Development Program of China
  grantid: 2021YFB3901300
  funderid: 10.13039/501100012166
– fundername: European Space Agency (ESA)-National Remote Sensing Center of China (NRSCC) Dragon-5 Cooperation Project
  grantid: 57979
  funderid: 10.13039/501100000844
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c337t-ed46f83465cae4a1db6ad4eb986d22b48750e482736989079d054d5011f23ec43
IEDL.DBID RIE
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001181483300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Mon Jun 30 08:20:12 EDT 2025
Tue Nov 18 21:52:54 EST 2025
Sat Nov 29 03:32:32 EST 2025
Wed Aug 27 02:12:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-ed46f83465cae4a1db6ad4eb986d22b48750e482736989079d054d5011f23ec43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8363-3502
0000-0003-4567-0377
0000-0001-7698-9861
0000-0003-3295-6544
0000-0002-5523-7609
0000-0001-9920-4641
OpenAccessLink https://ieeexplore.ieee.org/document/10444612
PQID 2947531434
PQPubID 85465
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TGRS_2024_3369023
crossref_primary_10_1109_TGRS_2024_3369023
ieee_primary_10444612
proquest_journals_2947531434
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref14
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
Fingas (ref6)
ref44
ref43
ref49
ref8
ref7
ref4
ref3
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
Secretariat (ref9) 2017
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref19
  doi: 10.1016/j.rse.2018.05.001
– ident: ref44
  doi: 10.1029/JC094iC05p06251
– ident: ref12
  doi: 10.1109/TGRS.2021.3137654
– ident: ref14
  doi: 10.1016/S0034-4257(98)00034-0
– ident: ref55
  doi: 10.1080/01431161.2014.905730
– ident: ref46
  doi: 10.1016/j.marpolbul.2019.06.018
– ident: ref7
  doi: 10.3390/s18020641
– ident: ref17
  doi: 10.1109/TGRS.2013.2287916
– ident: ref47
  doi: 10.1049/PBEW047E
– ident: ref11
  doi: 10.1109/JSTARS.2020.3003686
– ident: ref10
  doi: 10.1016/j.marpolbul.2016.06.066
– ident: ref27
  doi: 10.1109/MGRS.2022.3145854
– ident: ref52
  doi: 10.1016/j.marpolbul.2016.06.027
– ident: ref25
  doi: 10.1002/2015jc011062
– ident: ref42
  doi: 10.3390/rs13061183
– ident: ref29
  doi: 10.1109/TGRS.2019.2942280
– ident: ref21
  doi: 10.1080/01431160010008564
– ident: ref3
  doi: 10.1109/TGRS.2018.2872080
– ident: ref56
  doi: 10.1109/JSTARS.2019.2961563
– ident: ref57
  doi: 10.5670/oceanog.2013.38
– ident: ref54
  doi: 10.1109/TGRS.2017.2661325
– start-page: 617
  volume-title: Proc. 35th Arctic Mar. Oil Spill Program Tech. Seminar
  ident: ref6
  article-title: How to measure slick thickness (or not)
– ident: ref38
  doi: 10.1109/36.134085
– ident: ref50
  doi: 10.1109/TGRS.2013.2259498
– ident: ref2
  doi: 10.3390/rs10020319
– ident: ref40
  doi: 10.1002/9781394180042
– ident: ref23
  doi: 10.1109/JSTARS.2023.3285145
– ident: ref18
  doi: 10.1109/TGRS.2014.2351417
– ident: ref4
  doi: 10.1007/3-540-33271-5
– ident: ref48
  doi: 10.3998/0472119356
– year: 2017
  ident: ref9
  publication-title: Bonn Agreement Aerial Operations Handbook
– ident: ref15
  doi: 10.1029/2012gl052304
– ident: ref24
  doi: 10.1016/j.marpolbul.2023.114952
– ident: ref43
  doi: 10.1016/S1353-2561(98)00023-1
– ident: ref20
  doi: 10.1080/014311698213849
– ident: ref33
  doi: 10.1109/IGARSS52108.2023.10282557
– ident: ref1
  doi: 10.1109/JSTARS.2013.2244061
– ident: ref5
  doi: 10.3390/s18010091
– ident: ref22
  doi: 10.3390/rs11232882
– ident: ref8
  doi: 10.1016/j.rse.2017.09.002
– ident: ref30
  doi: 10.3390/rs12111744
– ident: ref49
  doi: 10.1109/JSTARS.2016.2605151
– ident: ref34
  doi: 10.1109/TGRS.2021.3073369
– ident: ref36
  doi: 10.3390/rs11020160
– ident: ref39
  doi: 10.1029/97JC00467
– ident: ref13
  doi: 10.1029/97JC01915
– ident: ref26
  doi: 10.3390/rs10071012
– ident: ref37
  doi: 10.1109/TGRS.2002.807587
– ident: ref16
  doi: 10.1109/TGRS.2012.2185804
– ident: ref35
  doi: 10.1109/TGRS.2019.2905558
– ident: ref45
  doi: 10.1063/1.869240
– ident: ref28
  doi: 10.3390/w12113223
– ident: ref31
  doi: 10.3390/rs15164112
– ident: ref41
  doi: 10.1016/j.rse.2019.111421
– ident: ref32
  doi: 10.1016/j.rse.2020.111716
– ident: ref53
  doi: 10.1016/j.rse.2016.05.014
– ident: ref51
  doi: 10.1016/j.ecss.2010.05.015
SSID ssj0014517
Score 2.483579
Snippet In this study, the potential of electromagnetic scattering models to retrieve quantitative parameters of sea oil spills is investigated using an artificial...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Artificial intelligence
Artificial neural network (ANN)
Damping
Damping ratio
Deep water
DeepWater Horizon (DWH)
Dielectric constant
Electromagnetic scattering
Emulsions
Integral equations
Mathematical models
Neural networks
Oil slicks
oil spill
Oil spills
Oils
Parameter estimation
parameter inversion
Parameters
Predictive models
Radar
Radar imaging
Remote sensing
Rough surfaces
SAR (radar)
Scattering
scattering model
Sea surface
Seawater
Surface roughness
Surface waves
Synthetic aperture radar
synthetic aperture radar (SAR)
Thickness
Title Scattering Model-Based Oil-Slick-Related Parameters Estimation From Radar Remote Sensing: Feasibility and Simulation Results
URI https://ieeexplore.ieee.org/document/10444612
https://www.proquest.com/docview/2947531434
Volume 62
WOSCitedRecordID wos001181483300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELagAok9DChDdBTkB56QXBLbSZq9DbTCAypTU9DeIv-4oIo0nZp20qT98Ts7blWEQOItsnxRpC_23Wff3UfIOxGBVVpwBiJLGHoowZSTBExVlhiVoJnvwPfjazadjq-u8stQrO5rYQDAJ5_ByD36u3y7Mlt3VIYrXCJ7cZrCD7Ms64q19lcGMolDbXTKkEXwcIUZR_mH-edZgVSQy5EQyAa5-M0JeVWVP7Zi718mT__zy56R4xBI0vMO-efkATR9cnTQXrBPHvv0TtO-IHeF8X00cZg69bOafUTvZem3Rc2KemF-MZ8UhyOXymVruZab9AJXf1fYSCfr1ZLOlFVrOgMEF2jhEt-bn2cUY8iQYXtLVWNpsVgGRTCc2m7rTXtCvk8u5p--sKC7wIwQ2YaBlWk1FjJFtECq2OpUWQk6H6eWc-0oTgSufahw6pNRlluM-2yCO0XFBRgpXpJes2rgFaHo_HRseaWVNDJSMNagdFylwmiNgZwZkGgHRGlCU3KnjVGXnpxEeemwKx12ZcBuQN7vTa67jhz_mnziwDqY2OE0IMMd3GVYtG3Jc4nkDQNIefoXs9fkiXt7dwQzJL3NegtvyCNzs1m067f-f7wHnTfdtQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6hAQIe-DGGKBvgB56QPBLbSRrexrQyRClTU9DeIv-4ThVZipoWCYk_fmfHm4YQSLxFlk-J9MW---y7-wBeyQSdNlJwlEXGyUNJrr0kYK6LzOqMzEIHvq_jYjIZnp6WJ7FYPdTCIGJIPsN9_xju8t3SbvxRGa1wRezFawrfzJQSaV-udXVpoLI0VkfnnHiEiJeYaVK-mb2fVkQGhdqXkvigkL-5oaCr8sdmHDzM6MF_fttDuB9DSXbQY_8IbmC7DfeuNRjchtshwdN2j-FXZUMnTRpmXv-s4e_Ifzn2edHwqlnYbzykxdHIifb5Wr7pJjui9d-XNrLRannOptrpFZsiwYus8qnv7dlbRlFkzLH9yXTrWLU4j5pgNLXbNOtuB76MjmaHxzwqL3ArZbHm6FQ-H0qVE16odOpMrp1CUw5zJ4TxJCdB30BUev3JpCgdRX4uo71iLiRaJZ_AVrts8Skwcn8mdWJutLIq0Tg0qE06z6U1hkI5O4DkEojaxrbkXh2jqQM9ScraY1d77OqI3QBeX5l873ty_Gvyjgfr2sQepwHsXcJdx2Xb1aJURN8ohFTP_mL2Eu4czz6N6_GHycdduOvf1B_I7MHWerXB53DL_lgvutWL8G9eAEtP4Pw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scattering+Model-Based+Oil-Slick-Related+Parameters+Estimation+From+Radar+Remote+Sensing%3A+Feasibility+and+Simulation+Results&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Meng%2C+Tingyu&rft.au=Nunziata%2C+Ferdinando&rft.au=Yang%2C+Xiaofeng&rft.au=Buono%2C+Andrea&rft.date=2024&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=62&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTGRS.2024.3369023&rft.externalDocID=10444612
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon