Finding Ground-based Radars in SAR images: Localizing Radio Frequency Interference using Unsupervised Deep Learning

Synthetic Aperture Radar (SAR) satellite images are used increasingly more for Earth observation. While SAR images are useable in most conditions, they occasionally experience image degradation due to interfering signals from external radars, called Radio Frequency Interference (RFI). RFI affected i...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing Vol. 61; p. 1
Main Authors: Sorensen, Kristian Aa, Kusk, Anders, Heiselberg, Peder, Heiselberg, Henning
Format: Journal Article
Language:English
Published: New York IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0196-2892, 1558-0644
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Synthetic Aperture Radar (SAR) satellite images are used increasingly more for Earth observation. While SAR images are useable in most conditions, they occasionally experience image degradation due to interfering signals from external radars, called Radio Frequency Interference (RFI). RFI affected images are often discarded in further analysis or pre-processed to remove the RFI. However, few on-ground radars can cause RFI in SAR images and such information can thus increase domain awareness greatly over both land and sea, where, e.g ., localizing and characterizing RFI signals in the ocean could help classify otherwise overlooked ships. The aim of the current study is to detect and localize RFI signals automatically in Sentinel-1 level-1 images and further characterize the on-ground radar. The spatial structure of RFI signals vary greatly. A convolutional autoencoder was therefore developed to reconstruct RFI-free Sentinel-1 images. Conversely, RFI-affected images could not be well reconstructed. Anomalous heatmaps were then developed to automatically detect and localize RFI anomalies in the images under varying environmental and geographical conditions whereafter the external radar characteristics were extracted manually from Sentinel-1 level-0 data. We could consequently classify and localize RFI signals believed to originate from both stationary radars and ship-borne radars. We further argue that the calculated ship-borne radar characteristics correspond to those of air-surveillance radars. Empirically, the method showed better detection results than those of previous studies. Our study shows that more information can be extracted from certain detected objects, such as ships, from SAR images.
AbstractList Synthetic Aperture Radar (SAR) satellite images are used increasingly more for Earth observation. While SAR images are useable in most conditions, they occasionally experience image degradation due to interfering signals from external radars, called Radio Frequency Interference (RFI). RFI affected images are often discarded in further analysis or pre-processed to remove the RFI. However, few on-ground radars can cause RFI in SAR images and such information can thus increase domain awareness greatly over both land and sea, where, e.g ., localizing and characterizing RFI signals in the ocean could help classify otherwise overlooked ships. The aim of the current study is to detect and localize RFI signals automatically in Sentinel-1 level-1 images and further characterize the on-ground radar. The spatial structure of RFI signals vary greatly. A convolutional autoencoder was therefore developed to reconstruct RFI-free Sentinel-1 images. Conversely, RFI-affected images could not be well reconstructed. Anomalous heatmaps were then developed to automatically detect and localize RFI anomalies in the images under varying environmental and geographical conditions whereafter the external radar characteristics were extracted manually from Sentinel-1 level-0 data. We could consequently classify and localize RFI signals believed to originate from both stationary radars and ship-borne radars. We further argue that the calculated ship-borne radar characteristics correspond to those of air-surveillance radars. Empirically, the method showed better detection results than those of previous studies. Our study shows that more information can be extracted from certain detected objects, such as ships, from SAR images.
Synthetic aperture radar (SAR) satellite images are used increasingly more for Earth observation. While SAR images are useable in most conditions, they occasionally experience image degradation due to interfering signals from external radars, called radio frequency interference (RFI). RFI-affected images are often discarded in further analysis or preprocessed to remove the RFI. However, few on-ground radars can cause RFI in SAR images and such information can thus increase domain awareness greatly over both land and sea, where, e.g., localizing and characterizing RFI signals in the ocean could help classify otherwise overlooked ships. The aim of the current study is to detect and localize RFI signals automatically in Sentinel-1 level-1 images and further characterize the on-ground radar. The spatial structure of RFI signals vary greatly. A convolutional autoencoder (CAE) was therefore developed to reconstruct RFI-free Sentinel-1 images. Conversely, RFI-affected images could not be well reconstructed. Anomalous heatmaps were then developed to automatically detect and localize RFI anomalies in the images under varying environmental and geographical conditions, whereafter the external radar characteristics were extracted manually from Sentinel-1 level-0 data. We could consequently classify and localize RFI signals believed to originate from both stationary radars and ship-borne radars. We further argue that the calculated ship-borne radar characteristics correspond to those of air-surveillance radars. Empirically, the method showed better detection results than those of previous studies. Our study shows that more information can be extracted from certain detected objects, such as ships, from SAR images.
Author Heiselberg, Peder
Kusk, Anders
Heiselberg, Henning
Sorensen, Kristian Aa
Author_xml – sequence: 1
  givenname: Kristian Aa
  orcidid: 0000-0001-6443-1297
  surname: Sorensen
  fullname: Sorensen, Kristian Aa
  organization: Center for Security located at the National Space Institute of Denmark, Technical University of Denmark, Ørsteds Plads, building 348, Kgs. Lyngby, Denmark
– sequence: 2
  givenname: Anders
  orcidid: 0000-0001-7822-4758
  surname: Kusk
  fullname: Kusk, Anders
  organization: Department of Microwaves and Remote Sensing, The National Space Institute of Denmark, Technical University of Denmark, Ørsteds Plads, building 348, Kgs. Lyngby, Denmark
– sequence: 3
  givenname: Peder
  orcidid: 0000-0002-8847-634X
  surname: Heiselberg
  fullname: Heiselberg, Peder
  organization: Department of Geodesy and Earth Observation, The National Space Institute of Denmark, Technical University of Denmark, Elektrovej, building 327 and 328, Kgs. Lyngby, Denmark
– sequence: 4
  givenname: Henning
  surname: Heiselberg
  fullname: Heiselberg, Henning
  organization: Center for Security located at the National Space Institute of Denmark, Technical University of Denmark, Ørsteds Plads, building 348, Kgs. Lyngby, Denmark
BookMark eNp9kE1LAzEQhoMoWD9-gOAh4HnrJNntJt5EbRUKQj_OyzQ7W1Jqtia7Qv317tIexIOnYZjnfWfmvWCnvvbE2I2AoRBg7heT2XwoQaqhkiYDkCdsILJMJzBK01M2AGFGidRGnrOLGDcAIs1EPmBx7Hzp_JpPQt36MllhpJLPsMQQufN8_jjj7gPXFB_4tLa4dd893QGu5uNAny15u-dvvqFQUega4m3skaWP7Y7Cl-sNn4l2fEoYfDe6YmcVbiNdH-slW45fFk-vyfR98vb0OE2sUnmTkB2hWmkEVeq8StGshEFVinRV5UZloNFUGiVpAakFLAkk2gyQRJWDtVJdsruD7y7U3Z2xKTZ1G3y3spA6NQKkznRHiQNlQx1joKrYhe7jsC8EFH22RZ9t0WdbHLPtNPkfjXUNNq72TUC3_Vd5e1A6Ivq1SWillVI_wuuKPQ
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3507862
crossref_primary_10_1109_JSTARS_2024_3394445
crossref_primary_10_1109_TMTT_2023_3318669
crossref_primary_10_1016_j_apor_2024_104241
crossref_primary_10_1016_j_rse_2025_114955
crossref_primary_10_1109_JSTARS_2025_3559171
Cites_doi 10.1109/ACSSC.2003.1292216
10.1109/ICCV.2019.00179
10.1109/IGARSS.2018.8519373
10.1109/TGRS.2022.3190288
10.1109/COMITE.2013.6545070
10.1109/TGRS.2022.3213318
10.1109/TGRS.2022.3170363
10.1109/MGRS.2018.2832057
10.1109/TGRS.2013.2252469
10.3390/rs9111183
10.3390/rs13010007
10.3390/rs11202438
10.1109/IGARSS.2017.8127666
10.3390/rs14092236
10.1109/IGARSS39084.2020.9323726
10.1109/ACCESS.2021.3056504
10.1007/s11263-020-01419-7
10.1109/TGRS.2021.3049472
10.3390/rs11141654
10.3390/s20102919
10.1109/TIP.2003.819861
10.4236/jcc.2019.73002
10.23919/URSIAP-RASC.2019.8738633
10.3390/s18114034
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2023.3295002
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 1
ExternalDocumentID 10_1109_TGRS_2023_3295002
10183833
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AFRAH
AGQYO
AHBIQ
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
ESBDL
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
Y6R
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
CITATION
EJD
H~9
IBMZZ
ICLAB
IFJZH
VH1
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c337t-ec6a3b8a03d87f4a9b19a3d14bf793508a9f8a2e8104c0ade02ac50ae1f70cc23
IEDL.DBID RIE
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001047542000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Mon Jun 30 08:33:26 EDT 2025
Sat Nov 29 03:32:24 EST 2025
Tue Nov 18 21:43:02 EST 2025
Wed Aug 27 02:21:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-ec6a3b8a03d87f4a9b19a3d14bf793508a9f8a2e8104c0ade02ac50ae1f70cc23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6443-1297
0000-0002-8847-634X
0000-0001-7822-4758
0000-0003-2229-2000
OpenAccessLink https://ieeexplore.ieee.org/document/10183833
PQID 2849102858
PQPubID 85465
PageCount 1
ParticipantIDs crossref_primary_10_1109_TGRS_2023_3295002
proquest_journals_2849102858
crossref_citationtrail_10_1109_TGRS_2023_3295002
ieee_primary_10183833
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
ref14
ref36
ref31
ref30
hajduch (ref16) 0
ref10
ref2
ref1
ref17
vaswani (ref34) 2017
ref19
ref18
o’malley (ref26) 2019
recchia (ref11) 2018
he (ref32) 2021
ref20
piantanida (ref22) 2022
ref21
friedt (ref37) 2021
dosovitskiy (ref33) 2021
ref28
ref27
li (ref25) 2018; 18
ref29
ref8
meadows (ref6) 2018
ref9
hajduch (ref7) 2017
ref4
ref3
ioffe (ref24) 2015
ref5
(ref23) 2020
References_xml – ident: ref27
  doi: 10.1109/ACSSC.2003.1292216
– ident: ref35
  doi: 10.1109/ICCV.2019.00179
– ident: ref19
  doi: 10.1109/IGARSS.2018.8519373
– start-page: 16000
  year: 2021
  ident: ref32
  article-title: Masked autoencoders are scalable vision learners
  publication-title: Proc IEEE Conf Comput Vis and Pattern Recog
– ident: ref21
  doi: 10.1109/TGRS.2022.3190288
– volume: 18
  start-page: 6765
  year: 2018
  ident: ref25
  article-title: Hyperband: A novel bandit-based approach to hyperparameter optimization
  publication-title: J Mach Learn Res
– ident: ref36
  doi: 10.1109/COMITE.2013.6545070
– ident: ref15
  doi: 10.1109/TGRS.2022.3213318
– year: 2017
  ident: ref7
  article-title: Sentinel-1 RadarSat-2 mutual interference
– ident: ref5
  doi: 10.1109/TGRS.2022.3170363
– ident: ref2
  doi: 10.1109/MGRS.2018.2832057
– ident: ref17
  doi: 10.1109/TGRS.2013.2252469
– ident: ref9
  doi: 10.3390/rs9111183
– ident: ref10
  doi: 10.3390/rs13010007
– ident: ref3
  doi: 10.3390/rs11202438
– start-page: 1
  year: 2017
  ident: ref34
  article-title: Attention is all you need
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2021
  ident: ref33
  article-title: An image is worth 16×16 words: Transformers for image recognition at scale
  publication-title: arXiv 2010 11929
– year: 2019
  ident: ref26
  publication-title: KerasTuner
– ident: ref4
  doi: 10.1109/IGARSS.2017.8127666
– ident: ref1
  doi: 10.3390/rs14092236
– ident: ref8
  doi: 10.1109/IGARSS39084.2020.9323726
– ident: ref31
  doi: 10.1109/ACCESS.2021.3056504
– year: 0
  ident: ref16
  article-title: SAR-MPC Sentinel-1: Using the RFI annotations
– ident: ref29
  doi: 10.1007/s11263-020-01419-7
– year: 2018
  ident: ref6
  article-title: Sentinel-1 long duration mutual interference
– ident: ref20
  doi: 10.1109/TGRS.2021.3049472
– year: 2022
  ident: ref22
  article-title: Sentinel-1 Level 1 detailed algorithm definition
– ident: ref12
  doi: 10.3390/rs11141654
– start-page: 448
  year: 2015
  ident: ref24
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Proc Int Conf Mach Learn
– year: 2020
  ident: ref23
  publication-title: Sentinel-1 Level-0 Data Decoding Package
– ident: ref18
  doi: 10.3390/s20102919
– ident: ref28
  doi: 10.1109/TIP.2003.819861
– ident: ref30
  doi: 10.4236/jcc.2019.73002
– ident: ref13
  doi: 10.23919/URSIAP-RASC.2019.8738633
– start-page: 1
  year: 2018
  ident: ref11
  article-title: On the effective usage of Sentinel-1 noise pulses for denoising and RFI identification
  publication-title: Proc 12th Eur Conf Synth Aperture Radar
– year: 2021
  ident: ref37
  publication-title: Sentinel-1 Level-0 Data Decoding Package
– ident: ref14
  doi: 10.3390/s18114034
SSID ssj0014517
Score 2.4688847
Snippet Synthetic Aperture Radar (SAR) satellite images are used increasingly more for Earth observation. While SAR images are useable in most conditions, they...
Synthetic aperture radar (SAR) satellite images are used increasingly more for Earth observation. While SAR images are useable in most conditions, they...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Anomalies
anomaly classification and localization
Classification
convolutional autoencoder
Deep learning
Image degradation
Image reconstruction
Radar
Radar imaging
Radio
Radio frequency
Radio frequency interference
radio frequency interference (RFI)
SAR (radar)
Satellite imagery
Ships
Synthetic aperture radar
synthetic aperture radar (SAR)
Title Finding Ground-based Radars in SAR images: Localizing Radio Frequency Interference using Unsupervised Deep Learning
URI https://ieeexplore.ieee.org/document/10183833
https://www.proquest.com/docview/2849102858
Volume 61
WOSCitedRecordID wos001047542000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6a0EJ76CNN6SZp0aGngjayZVtWbyHttocSyiaB3IwsjYKh9S7r3ULy66ORtSFQWujNh5Ew_qyZ-UbzAPiQtUblsqh4qSvLgz1GbhBbHjwDH8yPxdyLOGxCnZ3VV1f6RypWj7UwiBiTz3BKj_Eu3y3shkJlx9RdKjAquQM7SqmxWOv-yqAos1QbXfHAIvJ0hZkJfXzxdX4-pTnhU5nrchtC2RqhOFXlD1Uc7cvsxX--2Ut4nhxJdjIi_woeYb8Hzx60F9yDJzG90w6vYZh1sXqFUaipd5xsl2Nz4wKtZV3Pzk_mrPsVVMvwiX0n69bdknQQ6BZsthrTrW9YDB-mAkFGGfPX7LIfNkvSN7ThZ8QlSx1br_fhcvbl4vQbT-MWuJVSrTnaysi2NkK6WvnC6DbTRrqsaH04xMGRM9rXJsc6MDgrjEORG1sKg5lXwtpcvoHdftHjW2C1k60LREkJLIpSO134UvjKV21RY2B4ExDb79_Y1IucRmL8bCInEbohyBqCrEmQTeDj_ZLl2IjjX8L7hNEDwRGeCRxtUW7SWR2aYKA1uVllffCXZYfwlHYfIy9HsLtebfAdPLa_192weh9_wzvS-dpM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFH-CDTQ4DNiGKAzmAyckd07sfJjbBCtDKxXqOmm3yLGfp0gjrZoWCf56bMedJiGQdsvhOYnyi_173w_gfVKrIuUip5nMNXV8jFQh1tRpBtbRj8bUsjBsophMyqsr-T0Wq4daGEQMyWc49Jchlm_meu1dZce-u5SzqPhD2M6ESJO-XOs2aCCyJFZH59TZEWkMYiZMHs--TC-GflL4kKcy2zhRNjQU5qr8dRgHhhk9u-e7PYfdqEqSkx77F_AA2z14eqfB4B48DgmeutuHbtSE-hXinU2toZ69DJkq4wxb0rTk4mRKmh_ucOk-krHnt-a3l3YCzZyMln3C9S8SHIixRJD4nPlrctl264U_cfwNPyMuSOzZen0Al6PT2aczGgcuUM15saKoc8XrUjFuysIKJetEKm4SUVu3jZ0qp6QtVYqls-E0UwZZqnTGFCa2YFqn_CVstfMWXwEpDa-NM5UKhkJk0khhM2Zzm9eiRGfjDYBtvn-lYzdyPxTjpgpWCZOVh6zykFURsgF8uF2y6Ftx_E_4wGN0R7CHZwCHG5SruFu7ylG09IpWVr7-x7Ij2DmbfRtX46-T8zfwxD-p98McwtZquca38Ej_XDXd8l34Jf8AVQ7dkw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finding+Ground-Based+Radars+in+SAR+Images%3A+Localizing+Radio+Frequency+Interference+Using+Unsupervised+Deep+Learning&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=S%C3%B8rensen%2C+Kristian+Aalling&rft.au=Kusk%2C+Anders&rft.au=Heiselberg%2C+Peder&rft.au=Heiselberg%2C+Henning&rft.date=2023-01-01&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=61&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1109%2FTGRS.2023.3295002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2023_3295002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon