Maximizing Social Welfare Subject to Network Externalities: A Unifying Submodular Optimization Approach

We consider the problem of allocating multiple indivisible items to a set of networked agents to maximize the social welfare subject to network effects (externalities). Here, the social welfare is given by the sum of agents' utilities and externalities capture the effect that one user of an ite...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on network science and engineering Vol. 11; no. 5; pp. 4860 - 4874
Main Author: Etesami, S. Rasoul
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.09.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2327-4697, 2334-329X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We consider the problem of allocating multiple indivisible items to a set of networked agents to maximize the social welfare subject to network effects (externalities). Here, the social welfare is given by the sum of agents' utilities and externalities capture the effect that one user of an item has on the item's value to others. We provide a general formulation that captures some of the existing resource allocation models as a special case and analyze it under various settings of positive/negative and convex/concave externalities. We then show that the maximum social welfare (MSW) problem benefits diminishing or increasing marginal return properties, hence making a connection to submodular/supermodular optimization. That allows us to devise polynomial-time approximation algorithms using the Lovász and multilinear extensions of the objective functions. More specifically, we first show that for negative concave externalities, there is an <inline-formula><tex-math notation="LaTeX">e</tex-math></inline-formula>-approximation algorithm for MSW. We then show that for convex polynomial externalities of degree <inline-formula><tex-math notation="LaTeX">d</tex-math></inline-formula> with positive coefficients, a randomized rounding technique based on Lovász extension achieves a <inline-formula><tex-math notation="LaTeX">d</tex-math></inline-formula> approximation for MSW. Moreover, for general positive convex externalities, we provide another randomized <inline-formula><tex-math notation="LaTeX">\gamma ^{-1}</tex-math></inline-formula>-approximation algorithm based on the contention resolution scheme, where <inline-formula><tex-math notation="LaTeX">\gamma</tex-math></inline-formula> captures the curvature of the externality functions. Finally, we consider MSW with positive concave externalities and provide approximation algorithms based on concave relaxation and multilinear extension of the objective function that achieve certain desirable performance guarantees. Our principled approach offers a simple and unifying framework for multi-item resource allocation to maximize the social welfare subject to network externalities.
AbstractList We consider the problem of allocating multiple indivisible items to a set of networked agents to maximize the social welfare subject to network effects (externalities). Here, the social welfare is given by the sum of agents' utilities and externalities capture the effect that one user of an item has on the item's value to others. We provide a general formulation that captures some of the existing resource allocation models as a special case and analyze it under various settings of positive/negative and convex/concave externalities. We then show that the maximum social welfare (MSW) problem benefits diminishing or increasing marginal return properties, hence making a connection to submodular/supermodular optimization. That allows us to devise polynomial-time approximation algorithms using the Lovász and multilinear extensions of the objective functions. More specifically, we first show that for negative concave externalities, there is an <inline-formula><tex-math notation="LaTeX">e</tex-math></inline-formula>-approximation algorithm for MSW. We then show that for convex polynomial externalities of degree <inline-formula><tex-math notation="LaTeX">d</tex-math></inline-formula> with positive coefficients, a randomized rounding technique based on Lovász extension achieves a <inline-formula><tex-math notation="LaTeX">d</tex-math></inline-formula> approximation for MSW. Moreover, for general positive convex externalities, we provide another randomized <inline-formula><tex-math notation="LaTeX">\gamma ^{-1}</tex-math></inline-formula>-approximation algorithm based on the contention resolution scheme, where <inline-formula><tex-math notation="LaTeX">\gamma</tex-math></inline-formula> captures the curvature of the externality functions. Finally, we consider MSW with positive concave externalities and provide approximation algorithms based on concave relaxation and multilinear extension of the objective function that achieve certain desirable performance guarantees. Our principled approach offers a simple and unifying framework for multi-item resource allocation to maximize the social welfare subject to network externalities.
We consider the problem of allocating multiple indivisible items to a set of networked agents to maximize the social welfare subject to network effects (externalities). Here, the social welfare is given by the sum of agents' utilities and externalities capture the effect that one user of an item has on the item's value to others. We provide a general formulation that captures some of the existing resource allocation models as a special case and analyze it under various settings of positive/negative and convex/concave externalities. We then show that the maximum social welfare (MSW) problem benefits diminishing or increasing marginal return properties, hence making a connection to submodular/supermodular optimization. That allows us to devise polynomial-time approximation algorithms using the Lovász and multilinear extensions of the objective functions. More specifically, we first show that for negative concave externalities, there is an [Formula Omitted]-approximation algorithm for MSW. We then show that for convex polynomial externalities of degree [Formula Omitted] with positive coefficients, a randomized rounding technique based on Lovász extension achieves a [Formula Omitted] approximation for MSW. Moreover, for general positive convex externalities, we provide another randomized [Formula Omitted]-approximation algorithm based on the contention resolution scheme, where [Formula Omitted] captures the curvature of the externality functions. Finally, we consider MSW with positive concave externalities and provide approximation algorithms based on concave relaxation and multilinear extension of the objective function that achieve certain desirable performance guarantees. Our principled approach offers a simple and unifying framework for multi-item resource allocation to maximize the social welfare subject to network externalities.
Author Etesami, S. Rasoul
Author_xml – sequence: 1
  givenname: S. Rasoul
  orcidid: 0000-0002-2087-6136
  surname: Etesami
  fullname: Etesami, S. Rasoul
  email: etesami1@illinois.edu
  organization: Department of Industrial and Systems Engineering, Department of Electrical and Computer Engineering, and Coordinated Science Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, USA
BookMark eNp9kMtOwzAQRS1UJJ4fgMTCEusU2-M8zK6qykMqsGgr2EVOMgGXNC6OIyhfT9KyQCzYzMzinjsz94gMalsjIWecDTln6nL-MJsMBRNyCKBiniR75FAAyACEeh70s4gDGan4gJw2zZIxxkUSAcAhebnXn2Zlvkz9Qmc2N7qiT1iV2iGdtdkSc0-9pQ_oP6x7o5NPj67WlfEGmys6oovalJst22YrW7SVdvRx7XtH7Y2t6Wi9dlbnrydkv9RVg6c__Zgsrifz8W0wfby5G4-mQQ4Q-wBVmWEiyxAKAF0WkeQxQxEJharIdCQxV13NcglZKEWmZSETqRXHJGNhIuGYXOx8u7XvLTY-Xdq2P7lJgSkZ8jBiqlPxnSp3tmkclunamZV2m5SztI807SNN-0jTn0g7Jv7D5MZvn_ROm-pf8nxHGkT8tSkULBEhfAPdS4da
CODEN ITNSD5
CitedBy_id crossref_primary_10_1016_j_iot_2025_101507
crossref_primary_10_1186_s12889_024_20072_0
Cites_doi 10.1145/2492002.2482594
10.1137/110832318
10.21236/ada637949
10.1007/978-3-642-17572-5_34
10.1145/2465769.2465778
10.1007/978-3-642-68874-4_10
10.1016/0166-218X(84)90003-9
10.1287/opre.1120.1066
10.1145/1064009.1064015
10.1137/080715421
10.1137/110839655
10.1145/1367497.1367526
10.1017/CBO9780511800481.013
10.1007/978-3-319-21786-4_2
10.1007/s10107-018-1248-6
10.1016/j.geb.2005.02.006
10.4086/toc.2010.v006a011
10.1007/978-3-642-25510-6_3
10.1145/585265.585268
10.1109/FOCS.2011.46
10.1006/game.1996.0027
10.1016/j.automatica.2020.109148
10.1137/19M1242525
10.1109/FOCS.2011.34
10.1007/978-3-642-33090-2_35
10.1145/2229012.2229029
10.1109/JSAC.2007.070816
10.1007/BF01737559
10.1007/978-3-642-22006-7_30
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TNSE.2024.3397188
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals (WRLC)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2334-329X
EndPage 4874
ExternalDocumentID 10_1109_TNSE_2024_3397188
10520825
Genre orig-research
GrantInformation_xml – fundername: Air Force Office of Scientific Research (AFOSR YIP)
  grantid: FA9550-23-1-0107
– fundername: NSF CAREER
  grantid: EPCN-1944403
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
IEDLZ
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c337t-e9fbe84f53d33afd64170e2629e9dba64ec9a64bc43b542ba4d484a91e8b05843
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001294586400022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2327-4697
IngestDate Mon Jun 30 09:47:33 EDT 2025
Sat Nov 29 04:55:57 EST 2025
Tue Nov 18 21:45:11 EST 2025
Wed Aug 27 02:32:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-e9fbe84f53d33afd64170e2629e9dba64ec9a64bc43b542ba4d484a91e8b05843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2087-6136
OpenAccessLink https://ieeexplore.ieee.org/document/10520825
PQID 3094515609
PQPubID 2040409
PageCount 15
ParticipantIDs crossref_primary_10_1109_TNSE_2024_3397188
proquest_journals_3094515609
ieee_primary_10520825
crossref_citationtrail_10_1109_TNSE_2024_3397188
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on network science and engineering
PublicationTitleAbbrev TNSE
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref15
Wolsey (ref35) 1999; 55
ref14
ref31
Akhlaghpour (ref12) 2010
ref30
ref11
Ene (ref26) 2014; 28
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
Keijzer (ref18) 2014
Calinescu (ref22) 2007
ref24
ref23
ref25
ref20
Santiago (ref28) 2019
ref21
Santiago (ref27) 2018; 116
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref16
  doi: 10.1145/2492002.2482594
– year: 2014
  ident: ref18
  article-title: Externalities and cooperation in algorithmic game theory
– ident: ref32
  doi: 10.1137/110832318
– ident: ref4
  doi: 10.21236/ada637949
– start-page: 415
  volume-title: Proc. Int. Workshop Internet Netw. Econ.
  year: 2010
  ident: ref12
  article-title: Optimal iterative pricing over social networks
  doi: 10.1007/978-3-642-17572-5_34
– ident: ref2
  doi: 10.1145/2465769.2465778
– ident: ref29
  doi: 10.1007/978-3-642-68874-4_10
– ident: ref33
  doi: 10.1016/0166-218X(84)90003-9
– ident: ref11
  doi: 10.1287/opre.1120.1066
– volume: 116
  start-page: 1
  issue: 23
  year: 2018
  ident: ref27
  article-title: Multi-agent submodular optimization
  publication-title: Approximation, Randomization, Combinatorial Optim. Algorithms Techn.
– ident: ref17
  doi: 10.1145/1064009.1064015
– ident: ref5
  doi: 10.1137/080715421
– volume: 55
  volume-title: Integer and Combinatorial Optimization
  year: 1999
  ident: ref35
– ident: ref21
  doi: 10.1137/110839655
– ident: ref3
  doi: 10.1145/1367497.1367526
– ident: ref20
  doi: 10.1017/CBO9780511800481.013
– ident: ref1
  doi: 10.1007/978-3-319-21786-4_2
– ident: ref34
  doi: 10.1007/s10107-018-1248-6
– ident: ref19
  doi: 10.1016/j.geb.2005.02.006
– ident: ref31
  doi: 10.4086/toc.2010.v006a011
– ident: ref13
  doi: 10.1007/978-3-642-25510-6_3
– ident: ref25
  doi: 10.1145/585265.585268
– ident: ref30
  doi: 10.1109/FOCS.2011.46
– ident: ref10
  doi: 10.1006/game.1996.0027
– start-page: 5599
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2019
  ident: ref28
  article-title: Multivariate submodular optimization
– ident: ref9
  doi: 10.1016/j.automatica.2020.109148
– ident: ref6
  doi: 10.1137/19M1242525
– volume: 28
  start-page: 144
  year: 2014
  ident: ref26
  article-title: Hardness of submodular cost allocation: Lattice matching and a simplex coloring conjecture
  publication-title: Approximation, Randomization, Combinatorial Optim.
– ident: ref24
  doi: 10.1109/FOCS.2011.34
– start-page: 182
  volume-title: Proc. Int. Conf. Integer Program. Combinatorial Optim.
  year: 2007
  ident: ref22
  article-title: Maximizing a submodular set function subject to a matroid constraint
– ident: ref14
  doi: 10.1007/978-3-642-33090-2_35
– ident: ref15
  doi: 10.1145/2229012.2229029
– ident: ref7
  doi: 10.1109/JSAC.2007.070816
– ident: ref8
  doi: 10.1007/BF01737559
– ident: ref23
  doi: 10.1007/978-3-642-22006-7_30
SSID ssj0001286333
Score 2.3008852
Snippet We consider the problem of allocating multiple indivisible items to a set of networked agents to maximize the social welfare subject to network effects...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4860
SubjectTerms Algorithms
Approximation
Approximation algorithms
congestion games
Costs
Game theory
Linear programming
network games
Network resource allocation
Optimization
Polynomials
Resource allocation
Resource management
Servers
Social factors
social welfare maximization
submodular optimization
Vehicles
Title Maximizing Social Welfare Subject to Network Externalities: A Unifying Submodular Optimization Approach
URI https://ieeexplore.ieee.org/document/10520825
https://www.proquest.com/docview/3094515609
Volume 11
WOSCitedRecordID wos001294586400022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 2334-329X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001286333
  issn: 2327-4697
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9ueNCDnxOnU3LwJHS2Tdom3oZseNAqOHW3kjSvMtiHbJ2If71JmulAFLyUFpJS8mveV97vPYTO_KBgTEnwAi0XPXMw5zEIhAcJj3JtX0tqU_6fbpI0ZYMBv3dkdcuFAQCbfAZtc2vP8tU0X5hQmd7hUWhcmhqqJUlckbVWAiosJoS4k8vA5xf99KGrPcCQtonWuoFtrvKte2wzlR8S2KqV3vY_P2gHbTn7EXcqwHfRGkz20OZKVcF99HIr3ofj4Yd-wBX7Fj_DqBAzwFpMmLgLLqc4rfK_cdeVgbaVVS9xB2sr1HKfzODxVJk0VXynBcvYMTZxx5Uhb6DHXrd_de25fgpeTkhSesALCYwWEVGEiELFNEh8COOQA1dSxBRyrq8yp0RGNJSCKsqo4AEw6WtDhRyg-mQ6gUOE_UhKbWuEXILQLo82OpjkikJEhVA0Ek3kL1c6y12xcdPzYpRZp8PnmQEnM-BkDpwmOv-a8lpV2vhrcMOgsTKwAqKJWks8M7cZ5xnRLmxkGOP86Jdpx2jDvL3KHWuhejlbwAlaz9_K4Xx2av-zTxxs0iI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSyMxFH_sqrB6WD-2Yl1Xc_AkTJ2ZJG3irSwtLtZRsGpvQzJ5IwXbSq2y-NebZFItiAt7GWYgYYb8Ju8r7_cewGGclEIYjVFi5WLkDuYigYmKsCV5Ye1rzXzK_02vlWViMJCXgazuuTCI6JPPsOFu_Vm-mRRPLlRmdzhPnUvzFZY5Y2lc0bUWQiqiSSkNZ5dJLI_72VXH-oApa1CrdxPfXuVd-_h2Kh9ksFcs3fX__KQN-B4sSNKuIN-ELzjegrWFuoI_4O5c_R2Ohi_2gVT8W3KL96WaIrGCwkVeyGxCsioDnHRCIWhfW_WEtIm1Qz37yQ0eTYxLVCUXVrSMAmeTtEMh8hpcdzv936dR6KgQFZS2ZhHKUqNgJaeGUlWaJktaMabNVKI0WjUZFtJedcGo5izVihkmmJIJCh1bU4Vuw9J4MsYdIDHX2lobqdSorNNjzQ6hpWHImVKGcVWHeL7SeRHKjbuuF_e5dztimTtwcgdOHsCpw9HblIeq1sa_BtccGgsDKyDqsDfHMw_b8TGn1onljjMudz-ZdgDfTvvnvbz3Jzv7CavuTVUm2R4szaZP-AtWiufZ8HG67_-5Vy_L1Wk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximizing+Social+Welfare+Subject+to+Network+Externalities%3A+A+Unifying+Submodular+Optimization+Approach&rft.jtitle=IEEE+transactions+on+network+science+and+engineering&rft.au=Etesami%2C+S.+Rasoul&rft.date=2024-09-01&rft.pub=IEEE&rft.eissn=2334-329X&rft.volume=11&rft.issue=5&rft.spage=4860&rft.epage=4874&rft_id=info:doi/10.1109%2FTNSE.2024.3397188&rft.externalDocID=10520825
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4697&client=summon