Research on Tourism Route Recommendation Strategy Based on Convolutional Neural Network and Collaborative Filtering Algorithm

With improving people’s living standards, tourism has become essential leisure and entertainment. At present, it has begun to shift from a quantity-oriented tourism method to a quality-oriented tourism method. It is difficult for passengers to choose the route that suits them from the numerous route...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Security and communication networks Ročník 2022; s. 1 - 9
Hlavný autor: He, Shan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Hindawi 07.05.2022
John Wiley & Sons, Inc
Predmet:
ISSN:1939-0114, 1939-0122
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract With improving people’s living standards, tourism has become essential leisure and entertainment. At present, it has begun to shift from a quantity-oriented tourism method to a quality-oriented tourism method. It is difficult for passengers to choose the route that suits them from the numerous routes. Given the above problems, this study proposes a travel route recommendation algorithm that combines a convolutional neural network and collaborative filtering. The algorithm uses a convolutional neural network to extract the latent features in the customer and travel itinerary data and then uses the matrix factorization method based on collaborative filtering to perform score prediction. The experimental results show that the algorithm can meet the travel requirements of different customers. At the same time, the recommendation accuracy of the tourist route is improved, and technology and method are provided for realizing the personalized recommendation service of the tourist route.
AbstractList With improving people’s living standards, tourism has become essential leisure and entertainment. At present, it has begun to shift from a quantity-oriented tourism method to a quality-oriented tourism method. It is difficult for passengers to choose the route that suits them from the numerous routes. Given the above problems, this study proposes a travel route recommendation algorithm that combines a convolutional neural network and collaborative filtering. The algorithm uses a convolutional neural network to extract the latent features in the customer and travel itinerary data and then uses the matrix factorization method based on collaborative filtering to perform score prediction. The experimental results show that the algorithm can meet the travel requirements of different customers. At the same time, the recommendation accuracy of the tourist route is improved, and technology and method are provided for realizing the personalized recommendation service of the tourist route.
Author He, Shan
Author_xml – sequence: 1
  givenname: Shan
  orcidid: 0000-0003-2932-3842
  surname: He
  fullname: He, Shan
  organization: Department of Foreign Languages and TourismHenan Institute of Economics and TradeZhengzhouHenan 450000Chinazzu.edu.cn
BookMark eNp9kM1OwzAQhC1UJGjhxgNY4gihthM7yREq_qQKpFLOkeNsWkMSg-1QceDdcSjigASnWWm_We3MGI060wFCR5ScUcr5lBHGpongORfpDtqneZxHhDI2-plpsofGzj0RImiSJvvoYwEOpFVrbDq8NL3VrsUL03vAC1CmbaGrpNdh-eCt9LB6xxfSQTXgM9O9maYftrLBd9DbL_EbY5-x7KoANI0sTfDpN8BXuvFgdbfC583KWO3X7QHarWXj4PBbJ-jx6nI5u4nm99e3s_N5pOI49RHwtEwoizOZ8ioWvFQVl5DKGlKR52VMyiQrc15nBCRnjAnKQACHWsWZUhWJJ-h4e_fFmtcenC-eQtTwtSuYEImgGSUsUGxLKWucs1AXSvuv8CG6bgpKiqHmYqi5-K45mE5_mV6sbqV9_ws_2eJrHYrd6P_pT-v7jqs
CitedBy_id crossref_primary_10_1016_j_ipm_2024_103970
crossref_primary_10_3390_su152316276
crossref_primary_10_1007_s10489_023_05244_6
crossref_primary_10_1155_2022_3922377
crossref_primary_10_1038_s41598_023_42862_z
crossref_primary_10_1007_s13132_023_01334_5
crossref_primary_10_1155_2024_9897316
Cites_doi 10.1177/1354816618811558
10.1108/jhtt-11-2014-0067
10.1038/s42256-020-0180-7
10.1016/j.ipm.2019.102142
10.1016/j.ijpe.2015.09.039
10.1177/1029864916650719
10.1016/j.jbusres.2015.03.026
10.1016/j.tele.2015.08.014
10.1016/j.rser.2016.10.079
10.1609/aaai.v33i01.33015409
10.1108/DPRG-06-2019-0041
10.1177/2056305120940690
10.1177/0003122417728662
10.1007/s11257-019-09237-4
10.1109/tpami.2017.2695539
10.1016/j.ijforecast.2019.03.017
10.1007/s11365-019-00562-z
10.1145/3132847.3133083
ContentType Journal Article
Copyright Copyright © 2022 Shan He.
Copyright © 2022 Shan He. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2022 Shan He.
– notice: Copyright © 2022 Shan He. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID RHU
RHW
RHX
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1155/2022/4659567
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
CrossRef
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-0122
Editor Liu, Fang
Editor_xml – sequence: 1
  givenname: Fang
  surname: Liu
  fullname: Liu, Fang
EndPage 9
ExternalDocumentID 10_1155_2022_4659567
GrantInformation_xml – fundername: Henan Institute of Economics and Trade
GroupedDBID .4S
.DC
05W
0R~
123
1OC
3SF
4.4
52U
5DZ
66C
8-1
8UM
AAESR
AAFWJ
AAJEY
AAONW
ACGFO
ADBBV
ADIZJ
AENEX
AFBPY
AFKRA
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
ATUGU
AZVAB
BCNDV
BENPR
BGLVJ
BHBCM
BNHUX
BOGZA
BRXPI
CCPQU
CS3
DR2
DU5
EBS
EIS
F1Z
G-S
GROUPED_DOAJ
HCIFZ
HZ~
IAO
ICD
ITC
IX1
K7-
LITHE
MY.
MY~
NNB
O9-
OIG
OK1
P2P
PIMPY
RHU
RHW
RHX
TH9
TUS
W99
WBKPD
XV2
24P
AAMMB
AAYXX
ACCMX
ADMLS
AEFGJ
AGXDD
AIDQK
AIDYY
ALUQN
CITATION
H13
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c337t-e57b41238a75d365bcd5ae7afe7699b30b48b95f80ea5222612e6e5efc38ccd03
IEDL.DBID RHX
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000797465500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-0114
IngestDate Fri Jul 25 20:53:07 EDT 2025
Sat Nov 29 02:59:38 EST 2025
Tue Nov 18 21:20:41 EST 2025
Sun Jun 02 18:53:17 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-e57b41238a75d365bcd5ae7afe7699b30b48b95f80ea5222612e6e5efc38ccd03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2932-3842
OpenAccessLink https://dx.doi.org/10.1155/2022/4659567
PQID 2664618102
PQPubID 1046363
PageCount 9
ParticipantIDs proquest_journals_2664618102
crossref_citationtrail_10_1155_2022_4659567
crossref_primary_10_1155_2022_4659567
hindawi_primary_10_1155_2022_4659567
PublicationCentury 2000
PublicationDate 2022-05-07
PublicationDateYYYYMMDD 2022-05-07
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-07
  day: 07
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Security and communication networks
PublicationYear 2022
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References 11
12
13
14
15
16
17
R. Villegas (10)
19
Z. Huang (18) 2015
1
2
J. P. Simon (4) 2019; 21
3
5
6
7
8
9
D. Liang (21)
20
References_xml – ident: 9
  doi: 10.1177/1354816618811558
– ident: 2
  doi: 10.1108/jhtt-11-2014-0067
– ident: 11
  doi: 10.1038/s42256-020-0180-7
– ident: 19
  doi: 10.1016/j.ipm.2019.102142
– ident: 14
  doi: 10.1016/j.ijpe.2015.09.039
– ident: 1
  doi: 10.1177/1029864916650719
– ident: 13
  doi: 10.1016/j.jbusres.2015.03.026
– ident: 6
  doi: 10.1016/j.tele.2015.08.014
– ident: 12
  doi: 10.1016/j.rser.2016.10.079
– ident: 16
  doi: 10.1609/aaai.v33i01.33015409
– volume: 21
  year: 2019
  ident: 4
  article-title: New players in the music industry: lifeboats or killer whales? The role of streaming platforms
  publication-title: Digital Policy, Regulation and Governance
  doi: 10.1108/DPRG-06-2019-0041
– ident: 3
  doi: 10.1177/2056305120940690
– ident: 8
  doi: 10.1177/0003122417728662
– ident: 7
  doi: 10.1007/s11257-019-09237-4
– ident: 17
  doi: 10.1109/tpami.2017.2695539
– ident: 15
  doi: 10.1016/j.ijforecast.2019.03.017
– start-page: 3560
  ident: 10
  article-title: Learning to Generate Long-Term Future via Hierarchical prediction
– year: 2015
  ident: 18
  article-title: Bidirectional LSTM-CRF models for sequence tagging
– ident: 5
  doi: 10.1007/s11365-019-00562-z
– ident: 20
  doi: 10.1145/3132847.3133083
– start-page: 59
  ident: 21
  article-title: Factorization meets the item embedding: regularizing matrix factorization with item co-occurrence
SSID ssj0061474
Score 2.325026
Snippet With improving people’s living standards, tourism has become essential leisure and entertainment. At present, it has begun to shift from a quantity-oriented...
SourceID proquest
crossref
hindawi
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Artificial neural networks
Collaboration
Customers
Decomposition
Feature extraction
Filtration
Information overload
Neural networks
Ratings & rankings
Recommender systems
Social networks
Tourism
Travel
Title Research on Tourism Route Recommendation Strategy Based on Convolutional Neural Network and Collaborative Filtering Algorithm
URI https://dx.doi.org/10.1155/2022/4659567
https://www.proquest.com/docview/2664618102
Volume 2022
WOSCitedRecordID wos000797465500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1939-0122
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061474
  issn: 1939-0114
  databaseCode: 24P
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5uKOiDeMXplDzMJymubdIkj3M49jSGKOyt5HLqBlsn25z44H836VJvQ_SpBE4a6Hd6LuTjOwg1bG_DFDUiEJkwAREqDLiMRMAEJFpG0tb4WTFsgvV6fDAQfS-SNF-_wrfZzrXn0TVxuncJq6AKp465ddcdlAHXJhjmL48d9SckJb_9x95vmWdr6Frel9FaCC7ySmcP7fqCELdWCO6jDcgP0M4XmcBD9FbS4_A0x172DzsqD2DXPU4m4CcjYa81-4pvbHIyzrw9zZfeu-wpToqjeBTcbyxzg9ufjrAE3Bm523N7Km6NH6ez0WI4OUIPndv7djfwYxMCHcdsEQBlitiExCWjJk6o0oZKYDIDlgih4qYiXAma8SZIW305DTFIgEKmY661acbHqJpPczhBOLQIch5CnMiQZAaUAWEXmVZE2ehEa-iq_KSp9pribrTFOC16C0pTB0DqAaihyw_rp5WWxi92DY_OH2b1ErrU_3jz1NYbJLFVSzM6_d9bztC2WxYcRlZH1cXsGc7Rpl4uRvPZBapEpH9RuNs7LLPOUw
linkProvider Hindawi Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Tourism+Route+Recommendation+Strategy+Based+on+Convolutional+Neural+Network+and+Collaborative+Filtering+Algorithm&rft.jtitle=Security+and+communication+networks&rft.au=He%2C+Shan&rft.date=2022-05-07&rft.issn=1939-0114&rft.eissn=1939-0122&rft.volume=2022&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1155%2F2022%2F4659567&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2022_4659567
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-0114&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-0114&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-0114&client=summon