Research on Reconstruction of Basketball Training Action Trajectory Based on Improved K-Means Clustering Algorithm

The automatic capture and analysis of basketball game movements can guide basketball training and provide an effective method for improving the efficiency of basketball training. This paper introduces the research status of clustering methods in the field of trajectory data mining and reconstruction...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Wireless communications and mobile computing Ročník 2022; číslo 1
Hlavní autoři: Peng, Yongwei, Gao, Weiyi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Hindawi 2022
John Wiley & Sons, Inc
Témata:
ISSN:1530-8669, 1530-8677
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The automatic capture and analysis of basketball game movements can guide basketball training and provide an effective method for improving the efficiency of basketball training. This paper introduces the research status of clustering methods in the field of trajectory data mining and reconstruction in detail. By analyzing the trajectory data under the constraints of the road network, the spatiotemporal characteristics of the existing trajectory clustering methods, and the deficiencies of the existing trajectory clustering methods, a new trajectory clustering method based on trajectory segmentation and spatiotemporal similarity measurement is implemented. A motion capture and reconstruction method for basketball training based on visual image K-means clustering algorithm is proposed. Multiresolution frame scanning technology is used to collect machine images of basketball training movements, and edge contour processing is performed on the collected high-resolution basketball training movement images. Feature detection uses the three-dimensional model reconstruction method to segment the basketball training action area and combines the irregular triangle network model to realize the machine vision block template matching processing of basketball training actions and capture the basketball training action in the Gaussian fuzzy affine space. In time and feature extraction, wavelet lifting technology is used to identify the ambiguity of basketball training movements, image enhancement technology is used to improve the resolution and adaptability of basketball training movement capture, and machine vision image processing methods are used to achieve basketball training movement capture optimization. The simulation results show that the method has better adaptability and higher feature recognition ability for basketball training motion capture and improves the feature extraction and adaptive capture reconstruction ability of basketball training motion.
AbstractList The automatic capture and analysis of basketball game movements can guide basketball training and provide an effective method for improving the efficiency of basketball training. This paper introduces the research status of clustering methods in the field of trajectory data mining and reconstruction in detail. By analyzing the trajectory data under the constraints of the road network, the spatiotemporal characteristics of the existing trajectory clustering methods, and the deficiencies of the existing trajectory clustering methods, a new trajectory clustering method based on trajectory segmentation and spatiotemporal similarity measurement is implemented. A motion capture and reconstruction method for basketball training based on visual image K-means clustering algorithm is proposed. Multiresolution frame scanning technology is used to collect machine images of basketball training movements, and edge contour processing is performed on the collected high-resolution basketball training movement images. Feature detection uses the three-dimensional model reconstruction method to segment the basketball training action area and combines the irregular triangle network model to realize the machine vision block template matching processing of basketball training actions and capture the basketball training action in the Gaussian fuzzy affine space. In time and feature extraction, wavelet lifting technology is used to identify the ambiguity of basketball training movements, image enhancement technology is used to improve the resolution and adaptability of basketball training movement capture, and machine vision image processing methods are used to achieve basketball training movement capture optimization. The simulation results show that the method has better adaptability and higher feature recognition ability for basketball training motion capture and improves the feature extraction and adaptive capture reconstruction ability of basketball training motion.
Author Gao, Weiyi
Peng, Yongwei
Author_xml – sequence: 1
  givenname: Yongwei
  surname: Peng
  fullname: Peng, Yongwei
  organization: Sichuan Film and Television UniversityChengduSichuan 610000China
– sequence: 2
  givenname: Weiyi
  orcidid: 0000-0003-1326-1640
  surname: Gao
  fullname: Gao, Weiyi
  organization: Sichuan Technology and Business UniversityChengduSichuan 610000China
BookMark eNp9kMtOwzAQRS0EEm1hxwdEYgmhfsR2sywVj4oipKqsI8dxWpfULrYD6t_j0IoFEqxmxnPvHev0wbGxRgFwgeANQpQOMcR4mFOCMGNHoIcogemIcX7807P8FPS9X0MICcSoB9xceSWcXCXWJHMlrfHBtTLoONo6uRX-TYVSNE2ycEIbbZbJeL-N81rJYN2uU6mqC5huts5-xP4pfVbC-GTStD4o921rltbpsNqcgZNaNF6dH-oAvN7fLSaP6ezlYToZz1JJCA-pgrVQNS5lNSIZ4XlGGCO4poznsnusKaoqBBlXmI0yWUIqKcclrDJESskVGYDLfW7803urfCjWtnUmniwwoySHGMbQAbjeq6Sz3jtVF1unN8LtCgSLjmrRUS0OVKMc_5JLHUQHJEQ-zV-mq71ppU0lPvX_J74AnUGJgg
CitedBy_id crossref_primary_10_1155_2023_9814738
crossref_primary_10_1109_ACCESS_2024_3463201
crossref_primary_10_1155_2022_4209020
Cites_doi 10.1146/annurev-psych-081420-110718
10.1007/s40171-021-00277-7
10.1109/TSMC.2020.3043016
10.1016/j.neuroscience.2013.01.048
10.1002/14651858.CD006732.pub4
10.1080/02701367.2003.10609090
10.1016/j.ijinfomgt.2019.01.021
10.1007/s00221-019-05677-x
10.1056/NEJMra1801063
10.1080/19397038.2020.1866708
10.1016/j.jclepro.2018.11.270
10.1108/JEIM-09-2019-0294
10.1007/978-3-030-05252-2
10.1109/ACCESS.2020.3012456
10.1016/j.ssci.2020.104705
10.1146/annurev-environ-012320-085130
10.1109/TFUZZ.2020.3002431
10.1007/s10551-019-04204-w
10.1155/2021/3045418
10.37547/jcass/volume01issue01-a6
10.1146/annurev-neuro-080317-062007
10.1001/jama.2019.3785
10.1088/1742-6596/1278/1/012018
10.1016/j.micpro.2020.103334
10.3390/electronics10070828
10.1016/j.esr.2019.02.003
ContentType Journal Article
Copyright Copyright © 2022 Yongwei Peng and Weiyi Gao.
Copyright © 2022 Yongwei Peng and Weiyi Gao. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright © 2022 Yongwei Peng and Weiyi Gao.
– notice: Copyright © 2022 Yongwei Peng and Weiyi Gao. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID RHU
RHW
RHX
AAYXX
CITATION
7SC
7SP
7XB
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1155/2022/9531266
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-8677
Editor Hashmi, Mohammad Farukh
Editor_xml – sequence: 1
  givenname: Mohammad Farukh
  surname: Hashmi
  fullname: Hashmi, Mohammad Farukh
ExternalDocumentID 10_1155_2022_9531266
GroupedDBID .3N
.DC
.GA
05W
0R~
123
1L6
24P
3SF
3WU
4.4
4ZD
50Y
50Z
52M
52O
52T
52U
52W
66C
6OB
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAFWJ
AAJEY
AAONW
ABIJN
ABPVW
ACCMX
ACGFO
ADBBV
ADIZJ
AENEX
AFBPY
AFKRA
AIAGR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
ARAPS
ASPBG
ATUGU
AVWKF
AZBYB
AZQEC
AZVAB
BAFTC
BCNDV
BENPR
BGLVJ
BHBCM
BNHUX
BROTX
BRXPI
CCPQU
CS3
D-E
D-F
DPXWK
DR2
DU5
DWQXO
EBS
F00
F01
F04
F21
G-S
G.N
GNP
GNUQQ
GODZA
H.T
H.X
H13
HCIFZ
HZ~
ITG
ITH
IX1
JPC
K7-
KQQ
LAW
LITHE
LP6
LP7
MK4
MY~
N04
N05
NF~
O9-
OIG
OK1
P2P
P2X
P4D
PHGZT
PIMPY
Q.N
QB0
QRW
R.K
RHU
RHW
RHX
RX1
RYL
SUPJJ
UB1
W8V
W99
WBKPD
XPP
XV2
~IA
~WT
.Y3
31~
5VS
AAEVG
AAMMB
AANHP
AAYXX
AAZKR
ACBWZ
ACRPL
ACXQS
ACYXJ
ADNMO
AEFGJ
AEIMD
AEUCX
AFFHD
AFZJQ
AGQPQ
AGXDD
AIDQK
AIDYY
ALUQN
AZFZN
BDRZF
BFHJK
CITATION
EJD
FEDTE
HF~
HVGLF
LH4
LW6
O8X
PHGZM
PQGLB
ROL
WYUIH
7SC
7SP
7XB
8FD
8FE
8FG
ABUWG
JQ2
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c337t-e0faef2bcd834379436632f5679cbcd8f51dd1067e2684cb05c572b0d413bc7e3
IEDL.DBID RHX
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000806513700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-8669
IngestDate Sat Aug 23 12:26:28 EDT 2025
Sat Nov 29 07:31:39 EST 2025
Tue Nov 18 22:38:35 EST 2025
Wed Apr 16 06:26:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-e0faef2bcd834379436632f5679cbcd8f51dd1067e2684cb05c572b0d413bc7e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1326-1640
OpenAccessLink https://dx.doi.org/10.1155/2022/9531266
PQID 2653902094
PQPubID 2034344
ParticipantIDs proquest_journals_2653902094
crossref_primary_10_1155_2022_9531266
crossref_citationtrail_10_1155_2022_9531266
hindawi_primary_10_1155_2022_9531266
PublicationCentury 2000
PublicationDate 2022-00-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022-00-00
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Wireless communications and mobile computing
PublicationYear 2022
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References Kay J. (e_1_2_8_14_2) 2020
e_1_2_8_27_2
e_1_2_8_28_2
e_1_2_8_29_2
e_1_2_8_23_2
e_1_2_8_24_2
e_1_2_8_25_2
e_1_2_8_26_2
e_1_2_8_9_2
e_1_2_8_2_2
e_1_2_8_1_2
e_1_2_8_6_2
e_1_2_8_5_2
e_1_2_8_8_2
e_1_2_8_7_2
e_1_2_8_20_2
e_1_2_8_21_2
e_1_2_8_22_2
e_1_2_8_16_2
e_1_2_8_17_2
e_1_2_8_18_2
e_1_2_8_19_2
e_1_2_8_12_2
e_1_2_8_13_2
e_1_2_8_15_2
Slovic P. (e_1_2_8_4_2) 1988
March J. G. (e_1_2_8_3_2) 1994
e_1_2_8_30_2
e_1_2_8_10_2
e_1_2_8_11_2
References_xml – ident: e_1_2_8_7_2
  doi: 10.1146/annurev-psych-081420-110718
– volume-title: Decision Making
  year: 1988
  ident: e_1_2_8_4_2
– ident: e_1_2_8_24_2
  doi: 10.1007/s40171-021-00277-7
– ident: e_1_2_8_6_2
  doi: 10.1109/TSMC.2020.3043016
– ident: e_1_2_8_28_2
  doi: 10.1016/j.neuroscience.2013.01.048
– ident: e_1_2_8_18_2
  doi: 10.1002/14651858.CD006732.pub4
– ident: e_1_2_8_1_2
  doi: 10.1080/02701367.2003.10609090
– ident: e_1_2_8_5_2
  doi: 10.1016/j.ijinfomgt.2019.01.021
– ident: e_1_2_8_29_2
  doi: 10.1007/s00221-019-05677-x
– volume-title: Primer on Decision Making: How Decisions Happen
  year: 1994
  ident: e_1_2_8_3_2
– ident: e_1_2_8_16_2
  doi: 10.1056/NEJMra1801063
– ident: e_1_2_8_19_2
  doi: 10.1080/19397038.2020.1866708
– ident: e_1_2_8_9_2
  doi: 10.1016/j.jclepro.2018.11.270
– ident: e_1_2_8_23_2
  doi: 10.1108/JEIM-09-2019-0294
– ident: e_1_2_8_8_2
  doi: 10.1007/978-3-030-05252-2
– ident: e_1_2_8_27_2
  doi: 10.1109/ACCESS.2020.3012456
– volume-title: Radical Uncertainty: Decision-Making beyond the Numbers
  year: 2020
  ident: e_1_2_8_14_2
– ident: e_1_2_8_21_2
  doi: 10.1016/j.ssci.2020.104705
– ident: e_1_2_8_11_2
  doi: 10.1146/annurev-environ-012320-085130
– ident: e_1_2_8_10_2
  doi: 10.1109/TFUZZ.2020.3002431
– ident: e_1_2_8_15_2
  doi: 10.1007/s10551-019-04204-w
– ident: e_1_2_8_30_2
  doi: 10.1155/2021/3045418
– ident: e_1_2_8_22_2
  doi: 10.37547/jcass/volume01issue01-a6
– ident: e_1_2_8_20_2
  doi: 10.1146/annurev-neuro-080317-062007
– ident: e_1_2_8_12_2
  doi: 10.1001/jama.2019.3785
– ident: e_1_2_8_25_2
  doi: 10.1088/1742-6596/1278/1/012018
– ident: e_1_2_8_2_2
  doi: 10.1016/j.micpro.2020.103334
– ident: e_1_2_8_17_2
  doi: 10.3390/electronics10070828
– ident: e_1_2_8_26_2
  doi: 10.1016/j.esr.2019.02.003
– ident: e_1_2_8_13_2
SSID ssj0003021
Score 2.307333
Snippet The automatic capture and analysis of basketball game movements can guide basketball training and provide an effective method for improving the efficiency of...
SourceID proquest
crossref
hindawi
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Basketball
Cluster analysis
Clustering
Data mining
Datasets
Efficiency
Experiments
Feature extraction
Feature recognition
Image enhancement
Image processing
Image reconstruction
Image resolution
Image segmentation
Location based services
Machine vision
Methods
Motion capture
Optimization
Roads & highways
Similarity measures
Template matching
Three dimensional models
Training
Trajectory analysis
Vector quantization
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA86FfTgtzidksM8SVibLEt7kjkcwnB4mLBbaT6q07rNbSr-9-a16SaIevDWNq8h8Ht5Xwm_h1BVBiIOtImJ1aWQ1IXdUjYN0oQlVPo0lkKYvNmE6HaDfj-8dQW3qbtWWdjEzFDrkYIaeY0Ch6qNbcL6xfiFQNcoOF11LTSW0YpPqQ963hFkbomZRx1fqkeCRiMsLr5zDjk_rYVWAWnGj7hwSWsPkAu_D77Z5szhtLf-u9RttOlCTdzMdWMHLZnhLtr4QkC4hybFxTs8GmLIRBd8sniU4Mt4-mRmMk5T3HOtJHAzH7Xvj1nB_wOkjIYJ8gKFfe6QG2NdIG6lr8DDkP2W3tslzh6e99Fd-6rXuiauCwNRjIkZMV4SG4uc0gED8sI6s0EKTXhDhAo-JtzXGojoDBDHKOlxxQWVnrbuUSph2AEqDUdDc4iwpIEOBVc2qFJ10ZCB4XHCuNbST1iQyDI6L4CIlKMoh04ZaZSlKpxHAFvkYCujs7n0OKfm-EGu6jD9Q6xSoBm5fTyNFlAe_T58jNZhsrw4U0ElC5Y5QavqbTaYTk4ztfwE3knogw
  priority: 102
  providerName: ProQuest
Title Research on Reconstruction of Basketball Training Action Trajectory Based on Improved K-Means Clustering Algorithm
URI https://dx.doi.org/10.1155/2022/9531266
https://www.proquest.com/docview/2653902094
Volume 2022
WOSCitedRecordID wos000806513700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0003021
  issn: 1530-8669
  databaseCode: P5Z
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0003021
  issn: 1530-8669
  databaseCode: K7-
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0003021
  issn: 1530-8669
  databaseCode: BENPR
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0003021
  issn: 1530-8669
  databaseCode: PIMPY
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003021
  issn: 1530-8669
  databaseCode: 24P
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5sVdCD-MRnyUFPEtxumiZ7rKIoYllEoXpZNo_V6tpKWxX_vZPd1Ceil2WTneQwM8k3kw3fAGwrKVJpbErRlyLaELikMA0ylGWhqoepEsKWxSZEuy07nSj2JEnDn7_wEe1ceh7uRegriCUVqEjunPf8uPO-4bIg9LSoAZXNZjS-3_5t7Bfkmb51Ke9L98cWXODK0TzM-YCQtEoLLsCE7S3C7CeawCUYjK_HkX6PuHzxg_WV9DOynw7v7UileU4ufMEH0iq_YvuuOJZ_dVLWuAnKYwR8P6VnFoGKHORPji2hGJbf9Afd0e3DMlweHV4cHFNfK4FqxsSI2iBLLepXG8kcxWCDYSgRZrwpIu06M143xtHFWUfvolXANRehCgyCmNLCshWo9vo9uwpEhdJEgmsMfXRDNJW0PM0YN0bVMyYztQa7Yz0m2hOJu3oWeVIkFJwnTuuJ1_oa7LxLP5YEGr_IbXuT_CG2ObZX4lfbMAkdvy7GvVFj_X-zbMCMa5ZHKZtQRaPZLZjSz6PucFCDyf3Ddnxeg8qpoPiM-TX2xSdn8VWt8Lw3dtHNHw
linkProvider Hindawi Publishing
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4BLQIObSlFvNr6ACdkkbXjtXOoENAi0MKqh63ELY0fKY-wC-wC4k_1NzKTB1upanvi0FsSTyzH_jzjGTvfAKxbozPjQ8YRSwmPNU4pdIM8l7mwLZFZrUOVbEJ3u-bkJPk6AT-bf2HoWGWjE0tF7QeOYuRbgjhUcW2TxNtX15yyRtHuapNCo4JFJzzco8s2_HT4Gcd3Q4j9L729A15nFeBOSj3iIcqzgC1x3kgi44slGl2Rq7ZOHD3MVct7IlYLRITibKSc0sJGHtW9dTpIrHcSXsTSaOLq72j-pPllJGp-1oibdjtpDtorRTEGsZUg4EXJxzg2gdOn5Hvfn_1mC0oDt__6f-uaN_CqXkqznQr78zAR-m9h7heCxQW4aQ4WskGfkac95stlg5ztZsOLMLJZUbBenSqD7VSleH9ebmg8kFTwVEEVgMHrDj8OaOLZXnFLPBPla8UP7JLR6eU7-PYsH70IU_1BPywBs8L4RCuHi0YX67Y1QWW5VN7bVi5Nbpdhsxn41NUU7JQJpEhLV0yplGCS1jBZho0n6auKeuQPcus1hv4httagJ6311DAdQ2fl78UfYeagd3yUHh12O6swSxVXgag1mMKBC-_hpbsbnQ1vPpRTgsH35wbaI4yLRdI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dT9RAEJ8gKJEHEMUIIu4DPJnN9XZvb9sHYvjwIjm98AAJb7X7JWi9Q-6U8K_51zHTbjkSAz7x4FvbnW7a7W9mdnanvwHYNKkuUucLjljKeEejSmEY5LgMwrRFYbT2dbEJPRikJyfZ4Qz8af6FobTKxiZWhtqNLK2RtwRxqOLcJuu0QkyLONzvvT__yamCFO20NuU0aoj0_dUlhm_j7YN9_NZbQvQ-HO195LHCALdS6gn3SSg8PpV1qSRivo5EByyC6urM0sWg2s4RyZonUhRrEmWVFiZxaPqN1V5iv49gDr2wIh3ra37jBWQiIldrwtNuN2uS7pWi9QbRyhD8ouJmnLrDJ6cUh1-e_eUXKmfXW_qfh-kZLMYpNtupdWIZZvzwOSzcIl58ARdNwiEbDRlF4FMeXTYKbLcYf_cTU5QlO4olNNhO3Yrn36qNjiuS8o46qBdm8LjPP3t0_Wyv_EX8E9Vt5VccksnpjxU4fpCXfgmzw9HQvwJmROoyrSxOJm1Hd03qVRGkcs60g0yDWYV3DQhyG6nZqUJImVchmlI5QSaPkFmFrRvp85qS5A65zYinf4itN0jKo_0a51MYrd3f_BbmEV_5p4NB_zU8pX7r9al1mMXv5t_AY_t7cja-2Ki0g8GXh8bZNWHvTow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Reconstruction+of+Basketball+Training+Action+Trajectory+Based+on+Improved+K-Means+Clustering+Algorithm&rft.jtitle=Wireless+communications+and+mobile+computing&rft.au=Peng%2C+Yongwei&rft.au=Gao%2C+Weiyi&rft.date=2022&rft.pub=Hindawi&rft.issn=1530-8669&rft.eissn=1530-8677&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F9531266&rft.externalDocID=10_1155_2022_9531266
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-8669&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-8669&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-8669&client=summon