Research on Reconstruction of Basketball Training Action Trajectory Based on Improved K-Means Clustering Algorithm
The automatic capture and analysis of basketball game movements can guide basketball training and provide an effective method for improving the efficiency of basketball training. This paper introduces the research status of clustering methods in the field of trajectory data mining and reconstruction...
Uloženo v:
| Vydáno v: | Wireless communications and mobile computing Ročník 2022; číslo 1 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford
Hindawi
2022
John Wiley & Sons, Inc |
| Témata: | |
| ISSN: | 1530-8669, 1530-8677 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The automatic capture and analysis of basketball game movements can guide basketball training and provide an effective method for improving the efficiency of basketball training. This paper introduces the research status of clustering methods in the field of trajectory data mining and reconstruction in detail. By analyzing the trajectory data under the constraints of the road network, the spatiotemporal characteristics of the existing trajectory clustering methods, and the deficiencies of the existing trajectory clustering methods, a new trajectory clustering method based on trajectory segmentation and spatiotemporal similarity measurement is implemented. A motion capture and reconstruction method for basketball training based on visual image K-means clustering algorithm is proposed. Multiresolution frame scanning technology is used to collect machine images of basketball training movements, and edge contour processing is performed on the collected high-resolution basketball training movement images. Feature detection uses the three-dimensional model reconstruction method to segment the basketball training action area and combines the irregular triangle network model to realize the machine vision block template matching processing of basketball training actions and capture the basketball training action in the Gaussian fuzzy affine space. In time and feature extraction, wavelet lifting technology is used to identify the ambiguity of basketball training movements, image enhancement technology is used to improve the resolution and adaptability of basketball training movement capture, and machine vision image processing methods are used to achieve basketball training movement capture optimization. The simulation results show that the method has better adaptability and higher feature recognition ability for basketball training motion capture and improves the feature extraction and adaptive capture reconstruction ability of basketball training motion. |
|---|---|
| AbstractList | The automatic capture and analysis of basketball game movements can guide basketball training and provide an effective method for improving the efficiency of basketball training. This paper introduces the research status of clustering methods in the field of trajectory data mining and reconstruction in detail. By analyzing the trajectory data under the constraints of the road network, the spatiotemporal characteristics of the existing trajectory clustering methods, and the deficiencies of the existing trajectory clustering methods, a new trajectory clustering method based on trajectory segmentation and spatiotemporal similarity measurement is implemented. A motion capture and reconstruction method for basketball training based on visual image K-means clustering algorithm is proposed. Multiresolution frame scanning technology is used to collect machine images of basketball training movements, and edge contour processing is performed on the collected high-resolution basketball training movement images. Feature detection uses the three-dimensional model reconstruction method to segment the basketball training action area and combines the irregular triangle network model to realize the machine vision block template matching processing of basketball training actions and capture the basketball training action in the Gaussian fuzzy affine space. In time and feature extraction, wavelet lifting technology is used to identify the ambiguity of basketball training movements, image enhancement technology is used to improve the resolution and adaptability of basketball training movement capture, and machine vision image processing methods are used to achieve basketball training movement capture optimization. The simulation results show that the method has better adaptability and higher feature recognition ability for basketball training motion capture and improves the feature extraction and adaptive capture reconstruction ability of basketball training motion. |
| Author | Gao, Weiyi Peng, Yongwei |
| Author_xml | – sequence: 1 givenname: Yongwei surname: Peng fullname: Peng, Yongwei organization: Sichuan Film and Television UniversityChengduSichuan 610000China – sequence: 2 givenname: Weiyi orcidid: 0000-0003-1326-1640 surname: Gao fullname: Gao, Weiyi organization: Sichuan Technology and Business UniversityChengduSichuan 610000China |
| BookMark | eNp9kMtOwzAQRS0EEm1hxwdEYgmhfsR2sywVj4oipKqsI8dxWpfULrYD6t_j0IoFEqxmxnPvHev0wbGxRgFwgeANQpQOMcR4mFOCMGNHoIcogemIcX7807P8FPS9X0MICcSoB9xceSWcXCXWJHMlrfHBtTLoONo6uRX-TYVSNE2ycEIbbZbJeL-N81rJYN2uU6mqC5huts5-xP4pfVbC-GTStD4o921rltbpsNqcgZNaNF6dH-oAvN7fLSaP6ezlYToZz1JJCA-pgrVQNS5lNSIZ4XlGGCO4poznsnusKaoqBBlXmI0yWUIqKcclrDJESskVGYDLfW7803urfCjWtnUmniwwoySHGMbQAbjeq6Sz3jtVF1unN8LtCgSLjmrRUS0OVKMc_5JLHUQHJEQ-zV-mq71ppU0lPvX_J74AnUGJgg |
| CitedBy_id | crossref_primary_10_1155_2023_9814738 crossref_primary_10_1109_ACCESS_2024_3463201 crossref_primary_10_1155_2022_4209020 |
| Cites_doi | 10.1146/annurev-psych-081420-110718 10.1007/s40171-021-00277-7 10.1109/TSMC.2020.3043016 10.1016/j.neuroscience.2013.01.048 10.1002/14651858.CD006732.pub4 10.1080/02701367.2003.10609090 10.1016/j.ijinfomgt.2019.01.021 10.1007/s00221-019-05677-x 10.1056/NEJMra1801063 10.1080/19397038.2020.1866708 10.1016/j.jclepro.2018.11.270 10.1108/JEIM-09-2019-0294 10.1007/978-3-030-05252-2 10.1109/ACCESS.2020.3012456 10.1016/j.ssci.2020.104705 10.1146/annurev-environ-012320-085130 10.1109/TFUZZ.2020.3002431 10.1007/s10551-019-04204-w 10.1155/2021/3045418 10.37547/jcass/volume01issue01-a6 10.1146/annurev-neuro-080317-062007 10.1001/jama.2019.3785 10.1088/1742-6596/1278/1/012018 10.1016/j.micpro.2020.103334 10.3390/electronics10070828 10.1016/j.esr.2019.02.003 |
| ContentType | Journal Article |
| Copyright | Copyright © 2022 Yongwei Peng and Weiyi Gao. Copyright © 2022 Yongwei Peng and Weiyi Gao. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright © 2022 Yongwei Peng and Weiyi Gao. – notice: Copyright © 2022 Yongwei Peng and Weiyi Gao. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | RHU RHW RHX AAYXX CITATION 7SC 7SP 7XB 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.1155/2022/9531266 |
| DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1530-8677 |
| Editor | Hashmi, Mohammad Farukh |
| Editor_xml | – sequence: 1 givenname: Mohammad Farukh surname: Hashmi fullname: Hashmi, Mohammad Farukh |
| ExternalDocumentID | 10_1155_2022_9531266 |
| GroupedDBID | .3N .DC .GA 05W 0R~ 123 1L6 24P 3SF 3WU 4.4 4ZD 50Y 50Z 52M 52O 52T 52U 52W 66C 6OB 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAFWJ AAJEY AAONW ABIJN ABPVW ACCMX ACGFO ADBBV ADIZJ AENEX AFBPY AFKRA AIAGR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR ARAPS ASPBG ATUGU AVWKF AZBYB AZQEC AZVAB BAFTC BCNDV BENPR BGLVJ BHBCM BNHUX BROTX BRXPI CCPQU CS3 D-E D-F DPXWK DR2 DU5 DWQXO EBS F00 F01 F04 F21 G-S G.N GNP GNUQQ GODZA H.T H.X H13 HCIFZ HZ~ ITG ITH IX1 JPC K7- KQQ LAW LITHE LP6 LP7 MK4 MY~ N04 N05 NF~ O9- OIG OK1 P2P P2X P4D PHGZT PIMPY Q.N QB0 QRW R.K RHU RHW RHX RX1 RYL SUPJJ UB1 W8V W99 WBKPD XPP XV2 ~IA ~WT .Y3 31~ 5VS AAEVG AAMMB AANHP AAYXX AAZKR ACBWZ ACRPL ACXQS ACYXJ ADNMO AEFGJ AEIMD AEUCX AFFHD AFZJQ AGQPQ AGXDD AIDQK AIDYY ALUQN AZFZN BDRZF BFHJK CITATION EJD FEDTE HF~ HVGLF LH4 LW6 O8X PHGZM PQGLB ROL WYUIH 7SC 7SP 7XB 8FD 8FE 8FG ABUWG JQ2 L7M L~C L~D M0N P62 PKEHL PQEST PQQKQ PQUKI PRINS PUEGO Q9U |
| ID | FETCH-LOGICAL-c337t-e0faef2bcd834379436632f5679cbcd8f51dd1067e2684cb05c572b0d413bc7e3 |
| IEDL.DBID | RHX |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000806513700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-8669 |
| IngestDate | Sat Aug 23 12:26:28 EDT 2025 Sat Nov 29 07:31:39 EST 2025 Tue Nov 18 22:38:35 EST 2025 Wed Apr 16 06:26:44 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c337t-e0faef2bcd834379436632f5679cbcd8f51dd1067e2684cb05c572b0d413bc7e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1326-1640 |
| OpenAccessLink | https://dx.doi.org/10.1155/2022/9531266 |
| PQID | 2653902094 |
| PQPubID | 2034344 |
| ParticipantIDs | proquest_journals_2653902094 crossref_primary_10_1155_2022_9531266 crossref_citationtrail_10_1155_2022_9531266 hindawi_primary_10_1155_2022_9531266 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-00-00 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 2022-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Wireless communications and mobile computing |
| PublicationYear | 2022 |
| Publisher | Hindawi John Wiley & Sons, Inc |
| Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
| References | Kay J. (e_1_2_8_14_2) 2020 e_1_2_8_27_2 e_1_2_8_28_2 e_1_2_8_29_2 e_1_2_8_23_2 e_1_2_8_24_2 e_1_2_8_25_2 e_1_2_8_26_2 e_1_2_8_9_2 e_1_2_8_2_2 e_1_2_8_1_2 e_1_2_8_6_2 e_1_2_8_5_2 e_1_2_8_8_2 e_1_2_8_7_2 e_1_2_8_20_2 e_1_2_8_21_2 e_1_2_8_22_2 e_1_2_8_16_2 e_1_2_8_17_2 e_1_2_8_18_2 e_1_2_8_19_2 e_1_2_8_12_2 e_1_2_8_13_2 e_1_2_8_15_2 Slovic P. (e_1_2_8_4_2) 1988 March J. G. (e_1_2_8_3_2) 1994 e_1_2_8_30_2 e_1_2_8_10_2 e_1_2_8_11_2 |
| References_xml | – ident: e_1_2_8_7_2 doi: 10.1146/annurev-psych-081420-110718 – volume-title: Decision Making year: 1988 ident: e_1_2_8_4_2 – ident: e_1_2_8_24_2 doi: 10.1007/s40171-021-00277-7 – ident: e_1_2_8_6_2 doi: 10.1109/TSMC.2020.3043016 – ident: e_1_2_8_28_2 doi: 10.1016/j.neuroscience.2013.01.048 – ident: e_1_2_8_18_2 doi: 10.1002/14651858.CD006732.pub4 – ident: e_1_2_8_1_2 doi: 10.1080/02701367.2003.10609090 – ident: e_1_2_8_5_2 doi: 10.1016/j.ijinfomgt.2019.01.021 – ident: e_1_2_8_29_2 doi: 10.1007/s00221-019-05677-x – volume-title: Primer on Decision Making: How Decisions Happen year: 1994 ident: e_1_2_8_3_2 – ident: e_1_2_8_16_2 doi: 10.1056/NEJMra1801063 – ident: e_1_2_8_19_2 doi: 10.1080/19397038.2020.1866708 – ident: e_1_2_8_9_2 doi: 10.1016/j.jclepro.2018.11.270 – ident: e_1_2_8_23_2 doi: 10.1108/JEIM-09-2019-0294 – ident: e_1_2_8_8_2 doi: 10.1007/978-3-030-05252-2 – ident: e_1_2_8_27_2 doi: 10.1109/ACCESS.2020.3012456 – volume-title: Radical Uncertainty: Decision-Making beyond the Numbers year: 2020 ident: e_1_2_8_14_2 – ident: e_1_2_8_21_2 doi: 10.1016/j.ssci.2020.104705 – ident: e_1_2_8_11_2 doi: 10.1146/annurev-environ-012320-085130 – ident: e_1_2_8_10_2 doi: 10.1109/TFUZZ.2020.3002431 – ident: e_1_2_8_15_2 doi: 10.1007/s10551-019-04204-w – ident: e_1_2_8_30_2 doi: 10.1155/2021/3045418 – ident: e_1_2_8_22_2 doi: 10.37547/jcass/volume01issue01-a6 – ident: e_1_2_8_20_2 doi: 10.1146/annurev-neuro-080317-062007 – ident: e_1_2_8_12_2 doi: 10.1001/jama.2019.3785 – ident: e_1_2_8_25_2 doi: 10.1088/1742-6596/1278/1/012018 – ident: e_1_2_8_2_2 doi: 10.1016/j.micpro.2020.103334 – ident: e_1_2_8_17_2 doi: 10.3390/electronics10070828 – ident: e_1_2_8_26_2 doi: 10.1016/j.esr.2019.02.003 – ident: e_1_2_8_13_2 |
| SSID | ssj0003021 |
| Score | 2.307333 |
| Snippet | The automatic capture and analysis of basketball game movements can guide basketball training and provide an effective method for improving the efficiency of... |
| SourceID | proquest crossref hindawi |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms Basketball Cluster analysis Clustering Data mining Datasets Efficiency Experiments Feature extraction Feature recognition Image enhancement Image processing Image reconstruction Image resolution Image segmentation Location based services Machine vision Methods Motion capture Optimization Roads & highways Similarity measures Template matching Three dimensional models Training Trajectory analysis Vector quantization |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA86FfTgtzidksM8SVibLEt7kjkcwnB4mLBbaT6q07rNbSr-9-a16SaIevDWNq8h8Ht5Xwm_h1BVBiIOtImJ1aWQ1IXdUjYN0oQlVPo0lkKYvNmE6HaDfj-8dQW3qbtWWdjEzFDrkYIaeY0Ch6qNbcL6xfiFQNcoOF11LTSW0YpPqQ963hFkbomZRx1fqkeCRiMsLr5zDjk_rYVWAWnGj7hwSWsPkAu_D77Z5szhtLf-u9RttOlCTdzMdWMHLZnhLtr4QkC4hybFxTs8GmLIRBd8sniU4Mt4-mRmMk5T3HOtJHAzH7Xvj1nB_wOkjIYJ8gKFfe6QG2NdIG6lr8DDkP2W3tslzh6e99Fd-6rXuiauCwNRjIkZMV4SG4uc0gED8sI6s0EKTXhDhAo-JtzXGojoDBDHKOlxxQWVnrbuUSph2AEqDUdDc4iwpIEOBVc2qFJ10ZCB4XHCuNbST1iQyDI6L4CIlKMoh04ZaZSlKpxHAFvkYCujs7n0OKfm-EGu6jD9Q6xSoBm5fTyNFlAe_T58jNZhsrw4U0ElC5Y5QavqbTaYTk4ztfwE3knogw priority: 102 providerName: ProQuest |
| Title | Research on Reconstruction of Basketball Training Action Trajectory Based on Improved K-Means Clustering Algorithm |
| URI | https://dx.doi.org/10.1155/2022/9531266 https://www.proquest.com/docview/2653902094 |
| Volume | 2022 |
| WOSCitedRecordID | wos000806513700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1530-8677 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0003021 issn: 1530-8669 databaseCode: P5Z dateStart: 20170101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1530-8677 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0003021 issn: 1530-8669 databaseCode: K7- dateStart: 20170101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1530-8677 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0003021 issn: 1530-8669 databaseCode: BENPR dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1530-8677 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0003021 issn: 1530-8669 databaseCode: PIMPY dateStart: 20170101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1530-8677 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003021 issn: 1530-8669 databaseCode: 24P dateStart: 20170101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5sVdCD-MRnyUFPEtxumiZ7rKIoYllEoXpZNo_V6tpKWxX_vZPd1Ceil2WTneQwM8k3kw3fAGwrKVJpbErRlyLaELikMA0ylGWhqoepEsKWxSZEuy07nSj2JEnDn7_wEe1ceh7uRegriCUVqEjunPf8uPO-4bIg9LSoAZXNZjS-3_5t7Bfkmb51Ke9L98cWXODK0TzM-YCQtEoLLsCE7S3C7CeawCUYjK_HkX6PuHzxg_WV9DOynw7v7UileU4ufMEH0iq_YvuuOJZ_dVLWuAnKYwR8P6VnFoGKHORPji2hGJbf9Afd0e3DMlweHV4cHFNfK4FqxsSI2iBLLepXG8kcxWCDYSgRZrwpIu06M143xtHFWUfvolXANRehCgyCmNLCshWo9vo9uwpEhdJEgmsMfXRDNJW0PM0YN0bVMyYztQa7Yz0m2hOJu3oWeVIkFJwnTuuJ1_oa7LxLP5YEGr_IbXuT_CG2ObZX4lfbMAkdvy7GvVFj_X-zbMCMa5ZHKZtQRaPZLZjSz6PucFCDyf3Ddnxeg8qpoPiM-TX2xSdn8VWt8Lw3dtHNHw |
| linkProvider | Hindawi Publishing |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4BLQIObSlFvNr6ACdkkbXjtXOoENAi0MKqh63ELY0fKY-wC-wC4k_1NzKTB1upanvi0FsSTyzH_jzjGTvfAKxbozPjQ8YRSwmPNU4pdIM8l7mwLZFZrUOVbEJ3u-bkJPk6AT-bf2HoWGWjE0tF7QeOYuRbgjhUcW2TxNtX15yyRtHuapNCo4JFJzzco8s2_HT4Gcd3Q4j9L729A15nFeBOSj3iIcqzgC1x3kgi44slGl2Rq7ZOHD3MVct7IlYLRITibKSc0sJGHtW9dTpIrHcSXsTSaOLq72j-pPllJGp-1oibdjtpDtorRTEGsZUg4EXJxzg2gdOn5Hvfn_1mC0oDt__6f-uaN_CqXkqznQr78zAR-m9h7heCxQW4aQ4WskGfkac95stlg5ztZsOLMLJZUbBenSqD7VSleH9ebmg8kFTwVEEVgMHrDj8OaOLZXnFLPBPla8UP7JLR6eU7-PYsH70IU_1BPywBs8L4RCuHi0YX67Y1QWW5VN7bVi5Nbpdhsxn41NUU7JQJpEhLV0yplGCS1jBZho0n6auKeuQPcus1hv4httagJ6311DAdQ2fl78UfYeagd3yUHh12O6swSxVXgag1mMKBC-_hpbsbnQ1vPpRTgsH35wbaI4yLRdI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dT9RAEJ8gKJEHEMUIIu4DPJnN9XZvb9sHYvjwIjm98AAJb7X7JWi9Q-6U8K_51zHTbjkSAz7x4FvbnW7a7W9mdnanvwHYNKkuUucLjljKeEejSmEY5LgMwrRFYbT2dbEJPRikJyfZ4Qz8af6FobTKxiZWhtqNLK2RtwRxqOLcJuu0QkyLONzvvT__yamCFO20NuU0aoj0_dUlhm_j7YN9_NZbQvQ-HO195LHCALdS6gn3SSg8PpV1qSRivo5EByyC6urM0sWg2s4RyZonUhRrEmWVFiZxaPqN1V5iv49gDr2wIh3ra37jBWQiIldrwtNuN2uS7pWi9QbRyhD8ouJmnLrDJ6cUh1-e_eUXKmfXW_qfh-kZLMYpNtupdWIZZvzwOSzcIl58ARdNwiEbDRlF4FMeXTYKbLcYf_cTU5QlO4olNNhO3Yrn36qNjiuS8o46qBdm8LjPP3t0_Wyv_EX8E9Vt5VccksnpjxU4fpCXfgmzw9HQvwJmROoyrSxOJm1Hd03qVRGkcs60g0yDWYV3DQhyG6nZqUJImVchmlI5QSaPkFmFrRvp85qS5A65zYinf4itN0jKo_0a51MYrd3f_BbmEV_5p4NB_zU8pX7r9al1mMXv5t_AY_t7cja-2Ki0g8GXh8bZNWHvTow |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Reconstruction+of+Basketball+Training+Action+Trajectory+Based+on+Improved+K-Means+Clustering+Algorithm&rft.jtitle=Wireless+communications+and+mobile+computing&rft.au=Peng%2C+Yongwei&rft.au=Gao%2C+Weiyi&rft.date=2022&rft.pub=Hindawi&rft.issn=1530-8669&rft.eissn=1530-8677&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F9531266&rft.externalDocID=10_1155_2022_9531266 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-8669&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-8669&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-8669&client=summon |